scholarly journals Online Caching Networks with Adversarial Guarantees

Author(s):  
Yuanyuan Li ◽  
Tareq Si Salem ◽  
Giovanni Neglia ◽  
Stratis Ioannidis

We study a cache network under arbitrary adversarial request arrivals. We propose a distributed online policy based on the online tabular greedy algorithm. Our distributed policy achieves sublinear (1-1/e)-regret, also in the case when update costs cannot be neglected. Numerical evaluation over several topologies supports our theoretical results and demonstrates that our algorithm outperforms state-of-art online cache algorithms.

2015 ◽  
Vol 23 (2) ◽  
Author(s):  
Petr Stašek ◽  
Josef Kofron ◽  
Karel Najzar

AbstractThe paper is concerned with the superconvergence of numerical evaluation of Hadamard finite-part integral. Following the works [6-9], we studied the second-order and the third-order quadrature formulae of Newton-Cotes type and introduced new rules. The rule for the second-order gives the same convergence rate as the rule [6] but in more general cases, the rule for the third-order gives better results than the rule in [9] In this work, first we mention the main results on the superconvergence of the Newton-Cotes rules, we mention trapezoidal and Simpson’s rules and then we introduce a rule based on the cubic approximation. In the second part we describe important error estimates and in the last section we demonstrate theoretical results by numerical examples.


2009 ◽  
Vol 25 (1) ◽  
pp. 211-242 ◽  
Author(s):  
Grant Hillier ◽  
Raymond Kan ◽  
Xiaolu Wang

The top-order zonal polynomials Ck(A), and top-order invariant polynomials Ck1,…,kr (A1, …, Ar) in which each of the partitions of ki, i = 1, …, r, has only one part, occur frequently in multivariate distribution theory, and econometrics — see, for example, Phillips (1980, Econometrica 48, 861–878; 1984, Journal of Econometrics 26, 387–398; 1985, International Economic Review 26, 21–36; 1986, Econometrica 54, 881–896), Hillier (1985, Econometric Theory 1, 53–72; 2001, Econometric Theory 17, 1–28), Hillier and Satchell (1986, Econometric Theory 2, 66–74), and Smith (1989, Journal of Multivariate Analysis 31, 244–257; 1993, Australian Journal of Statistics 35, 271–282). However, even with the recursive algorithms of Ruben (1962, Annals of Mathematical Statistics 33, 542–570) and Chikuse (1987, Econometric Theory 3, 195–207), numerical evaluation of these invariant polynomials is extremely time consuming. As a result, the value of invariant polynomials has been largely confined to analytic work on distribution theory. In this paper we present new, very much more efficient, algorithms for computing both the top-order zonal and invariant polynomials. These results should make the theoretical results involving these functions much more valuable for direct practical study. We demonstrate the value of our results by providing fast and accurate algorithms for computing the moments of a ratio of quadratic forms in normal random variables.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Hongchao Kang ◽  
Xinping Shao

We consider the problem of the numerical evaluation of singular oscillatory Fourier transforms ∫ab‍x-aαb-xβf(x)eiωxdx, whereα>-1  and  β>-1. Based on substituting the original interval of integration by the paths of steepest descent, iffis analytic in the complex regionGcontaining [a,b], the computation of integrals can be transformed into the problems of integrating two integrals on [0, ∞) with the integrand that does not oscillate and decays exponentially fast, which can be efficiently computed by using the generalized Gauss Laguerre quadrature rule. The efficiency and the validity of the method are demonstrated by both numerical experiments and theoretical results. More importantly, the presented method in this paper is also a great improvement of a Filon-type method and a Clenshaw-Curtis-Filon-type method shown in Kang and Xiang (2011) and the Chebyshev expansions method proposed in Kang et al. (2013), for computing the above integrals.


Planta Medica ◽  
2015 ◽  
Vol 81 (11) ◽  
Author(s):  
K Yu ◽  
D Patel ◽  
L Qiao ◽  
G Isaac ◽  
J Traub ◽  
...  

1998 ◽  
Vol 37 (03) ◽  
pp. 235-238 ◽  
Author(s):  
M. El-Taha ◽  
D. E. Clark

AbstractA Logistic-Normal random variable (Y) is obtained from a Normal random variable (X) by the relation Y = (ex)/(1 + ex). In Monte-Carlo analysis of decision trees, Logistic-Normal random variates may be used to model the branching probabilities. In some cases, the probabilities to be modeled may not be independent, and a method for generating correlated Logistic-Normal random variates would be useful. A technique for generating correlated Normal random variates has been previously described. Using Taylor Series approximations and the algebraic definitions of variance and covariance, we describe methods for estimating the means, variances, and covariances of Normal random variates which, after translation using the above formula, will result in Logistic-Normal random variates having approximately the desired means, variances, and covariances. Multiple simulations of the method using the Mathematica computer algebra system show satisfactory agreement with the theoretical results.


2020 ◽  
pp. 131-138

The nonlinear optical properties of pepper oil are studied by diffraction ring patterns and Z-scan techniques with continuous wave beam from solid state laser at 473 nm wavelength. The nonlinear refractive index of the sample is calculated by both techniques. The sample show high nonlinear refractive index. Based on Fresnel-Kirchhoff diffraction integral, the far-field intensity distributions of ring patterns have been calculated. It is found that the experimental results are in good agreement with the theoretical results. Also the optical limiting property of pepper oil is reported. The results obtained in this study prove that the pepper oil has applications in nonlinear optical devices.


CCIT Journal ◽  
2019 ◽  
Vol 12 (2) ◽  
pp. 170-176
Author(s):  
Anggit Dwi Hartanto ◽  
Aji Surya Mandala ◽  
Dimas Rio P.L. ◽  
Sidiq Aminudin ◽  
Andika Yudirianto

Pacman is one of the labyrinth-shaped games where this game has used artificial intelligence, artificial intelligence is composed of several algorithms that are inserted in the program and Implementation of the dijkstra algorithm as a method of solving problems that is a minimum route problem on ghost pacman, where ghost plays a role chase player. The dijkstra algorithm uses a principle similar to the greedy algorithm where it starts from the first point and the next point is connected to get to the destination, how to compare numbers starting from the starting point and then see the next node if connected then matches one path with the path). From the results of the testing phase, it was found that the dijkstra algorithm is quite good at solving the minimum route solution to pursue the player, namely by getting a value of 13 according to manual calculations


Sign in / Sign up

Export Citation Format

Share Document