An Interview with Dr. Shipeng Yu, Winner of ACM SIGKDD 2021 Service Award

2021 ◽  
Vol 23 (2) ◽  
pp. 1-2
Author(s):  
Shipeng Yu

Shipeng Yu, Ph.D. is the recipient of the 2021 ACM SIGKDD Service Award, which is the highest service award in the field of knowledge discovery and data mining. Conferred annually on one individual or group in recognition of outstanding professional services and contributions to the field of knowledge discovery and data mining, Dr. Yu was honored for his years of service and many accomplishments as general chair of KDD 2017 and currently as sponsorship director for SIGKDD. Dr. Yu is Director of AI Engineering, Head of the Growth AI team at LinkedIn, the world's largest professional network. He sat down with SIGKDD Explorations to discuss how he first got involved in the KDD conference in 2006, the benefits and drawbacks of virtual conferences, his work at LinkedIn, and KDD's place in the field of machine learning, data science and artificial intelligence.

2021 ◽  
Vol 22 (2) ◽  
pp. 6-7
Author(s):  
Michael Zeller

Michael Zeller, Ph.D. is the recipient of the 2020 ACM SIGKDD Service Award, which is the highest service award in the field of knowledge discovery and data mining. Conferred annually on one individual or group in recognition of outstanding professional services and contributions to the field of knowledge discovery and data mining, Dr. Zeller was honored for his years of service and many accomplishments as the secretary and treasurer for ACM SIGKDD, the organizing body of the annual KDD conference. Zeller is also head of AI strategy and solutions at Temasek, a global investment company seeking to make a difference always with tomorrow in mind. He sat down with SIGKDD Explorations to discuss how he first got involved in the KDD conference in 1999, what he learned from the first-ever virtual conference, his work at Temasek, and what excites him about the future of machine learning, data science and artificial intelligence.


2021 ◽  
Vol 8 (32) ◽  
pp. 22-38
Author(s):  
José Manuel Amigo

Concepts like Machine Learning, Data Mining or Artificial Intelligence have become part of our daily life. This is mostly due to the incredible advances made in computation (hardware and software), the increasing capabilities of generating and storing all types of data and, especially, the benefits (societal and economical) that generate the analysis of such data. Simultaneously, Chemometrics has played an important role since the late 1970s, analyzing data within natural science (and especially in Analytical Chemistry). Even with the strong parallelisms between all of the abovementioned terms and being popular with most of us, it is still difficult to clearly define or differentiate the meaning of Machine Learning, Data Mining, Artificial Intelligence, Deep Learning and Chemometrics. This manuscript brings some light to the definitions of Machine Learning, Data Mining, Artificial Intelligence and Big Data Analysis, defines their application ranges and seeks an application space within the field of analytical chemistry (a.k.a. Chemometrics). The manuscript is full of personal, sometimes probably subjective, opinions and statements. Therefore, all opinions here are open for constructive discussion with the only purpose of Learning (like the Machines do nowadays).


2020 ◽  
Vol 24 (106) ◽  
pp. 79-87
Author(s):  
Fredy Humberto Troncoso Espinosa ◽  
Javiera Valentina Ruiz Tapia

La fuga de clientes es un problema relevante al que enfrentan las empresas de servicios y que les puede generar pérdidas económicas significativas. Identificar los elementos que llevan a un cliente a dejar de consumir un servicio es una tarea compleja, sin embargo, mediante su comportamiento es posible estimar una probabilidad de fuga asociada a cada uno de ellos. Esta investigación aplica minería de datos para la predicción de la fuga de clientes en una empresa de distribución de gas natural, mediante dos técnicas de machine learning: redes neuronales y support vector machine. Los resultados muestran que mediante la aplicación de estas técnicas es posible identificar los clientes con mayor probabilidad de fuga para tomar sobre estas acciones de retenciónoportunas y focalizadas, minimizando los costos asociados al error en la identificación de estos clientes. Palabras Clave: fuga de clientes, minería de datos, machine learning, distribución de gas natural. Referencias [1]J. Miranda, P. Rey y R. Weber, «Predicción de Fugas de Clientes para una Institución Financiera Mediante Support Vector Machines,» Revista Ingeniería de Sistemas Volumen XIX, pp. 49-68, 2005. [2]P. A. Pérez V., «Modelo de predicción de fuga de clientes de telefonía movil post pago,» Universidad de Chile, Santiago, Chile, 2014. [3]Gas Sur S.A., «https://www.gassur.cl/Quienes-Somos/,» [En línea]. [4]J. Xiao, X. Jiang, C. He y G. Teng, «Churn prediction in customer relationship management via GMDH-based multiple classifiers ensemble,» IEEE IntelligentSystems, vol. 31, nº 2, pp. 37-44, 2016. [5]A. M. Almana, M. S. Aksoy y R. Alzahrani, «A survey on data mining techniques in customer churn analysis for telecom industry,» International Journal of Engineering Research and Applications, vol. 4, nº 5, pp. 165-171, 2014. [6]A. Jelvez, M. Moreno, V. Ovalle, C. Torres y F. Troncoso, «Modelo predictivo de fuga de clientes utilizando mineríaa de datos para una empresa de telecomunicaciones en chile,» Universidad, Ciencia y Tecnología, vol. 18, nº 72, pp. 100-109, 2014. [7]D. Anil Kumar y V. Ravi, «Predicting credit card customer churn in banks using data mining,» International Journal of Data Analysis Techniques and Strategies, vol. 1, nº 1, pp. 4-28, 2008. [8]E. Aydoğan, C. Gencer y S. Akbulut, «Churn analysis and customer segmentation of a cosmetics brand using data mining techniques,» Journal of Engineeringand Natural Sciences, vol. 26, nº 1, 2008. [9]G. Dror, D. Pelleg, O. Rokhlenko y I. Szpektor, «Churn prediction in new users of Yahoo! answers,» de Proceedings of the 21st International Conference onWorld Wide Web, 2012. [10]T. Vafeiadis, K. Diamantaras, G. Sarigiannidis y K. Chatzisavvas, «A comparison of machine learning techniques for customer churn prediction,» SimulationModelling Practice and Theory, vol. 55, pp. 1-9, 2015. [11]Y. Xie, X. Li, E. Ngai y W. Ying, «Customer churn prediction using improved balanced random forests,» Expert Systems with Applications, vol. 36, nº 3, pp.5445-5449, 2009. [12]U. Fayyad, G. Piatetsky-Shapiro y P. Smyth, «Knowledge Discovery and Data Mining: Towards a Unifying Framework,» de KDD-96 Proceedings, 1996. [13]R. Brachman y T. Anand, «The process of knowledge discovery in databases,» de Advances in knowledge discovery and data mining, 1996. [14]K. Lakshminarayan, S. Harp, R. Goldman y T. Samad, «Imputation of Missing Data Using Machine Learning Techniques,» de KDD, 1996. [15]B. Nguyen , J. L. Rivero y C. Morell, «Aprendizaje supervisado de funciones de distancia: estado del arte,» Revista Cubana de Ciencias Informáticas, vol. 9, nº 2, pp. 14-28, 2015. [16]I. Monedero, F. Biscarri, J. Guerrero, M. Peña, M. Roldán y C. León, «Detection of water meter under-registration using statistical algorithms,» Journal of Water Resources Planning and Management, vol. 142, nº 1, p. 04015036, 2016. [17]I. Guyon y A. Elisseeff, «An introduction to variable and feature selection,» Journal of machine learning research, vol. 3, nº Mar, pp. 1157-1182, 2003. [18]K. Polat y S. Güneş, «A new feature selection method on classification of medical datasets: Kernel F-score feature selection,» Expert Systems with Applications, vol. 36, nº 7, pp. 10367-10373, 2009. [19]D. J. Matich, «Redes Neuronales. Conceptos Básicos y Aplicaciones,» de Cátedra: Informática Aplicada ala Ingeniería de Procesos- Orientación I, 2001. [20]E. Acevedo M., A. Serna A. y E. Serna M., «Principios y Características de las Redes Neuronales Artificiales, » de Desarrollo e Innovación en Ingeniería, Medellín, Editorial Instituto Antioqueño de Investigación, 2017, pp. Capítulo 10, 173-182. [21]M. Hofmann y R. Klinkenberg, RapidMiner: Data mining use cases and business analytics applications, CRC Press, 2016. [22]R. Pupale, «Towards Data Science,» 2018. [En línea]. Disponible: https://towardsdatascience.com/https-medium-com-pupalerushikesh-svm-f4b42800e989. [23]F. H. Troncoso Espinosa, «Prediction of recidivismin thefts and burglaries using machine learning,» Indian Journal of Science and Technology, vol. 13, nº 6, pp. 696-711, 2020. [24]L. Tashman, «Out-of-sample tests of forecasting accuracy: an analysis and review,» International journal of forecasting, vol. 16, nº 4, pp. 437-450, 2000. [25]S. Varma y R. Simon, «Bias in error estimation when using cross-validation for model selection,» BMC bioinformatics, vol. 7, nº 1, p. 91, 2006. [26]N. V. Chawla, K. W. Bowyer, L. O. Hall y W. Kegelmeyer, «SMOTE: Synthetic Minority Over-sampling Technique,» Journal of Artificial Inteligence Research16, pp. 321-357, 2002. [27]M. Sokolova y G. Lapalme, «A systematic analysis of performance measures for classification tasks,» Information processing & management, vol. 45, nº 4, pp. 427-437, 2009. [28]S. Narkhede, «Understanding AUC-ROC Curve,» Towards Data Science, vol. 26, 2018. [29]R. Westermann y W. Hager, «Error Probabilities in Educational and Psychological Research,» Journal of Educational Statistics, Vol 11, No 2, pp. 117-146, 1986.  


2020 ◽  
pp. 45-50
Author(s):  
D. V. Pasinitsky

The article is devoted to a targeted analysis of promising displacements in the guiding ideas of managing internal banking risks. Based on the study, the author proposes to intensify the introduction of digital technologies in banking practice based on: artificial intelligence, machine learning, data mining.


2020 ◽  
Vol 18 (3) ◽  
pp. 465
Author(s):  
Diana Rino Putri ◽  
Nurafni Eltivia ◽  
Ari Kamayanti ◽  
Jaswadi Jaswadi

In developing countries such as Indonesia, a large number of academics are unfamiliar with the true meaning of terms such as Big Data, Exabyte, Petabyte, Brontobyte, Artificial Intelligence, Machine Learning, Data Mining, Data Warehousing, Distributed Processing, Grid Computing and Cloud Computing. In this paper, we report the results of a survey carried out to ascertain the current level of awareness regarding Big Data among academics in Vocational College. Respondents to a questionnaire formulated for this purpose. Results of the survey seem to indicate that there is a need for multi-faceted efforts aimed at creating awareness regarding Big Data, the related technologies, challenges and future prospects.


2015 ◽  
Vol 2 (3) ◽  
pp. 121-128
Author(s):  
Praveen Kumar Donepudi

There is a wide scope of interdisciplinary crossing points between Artificial Intelligence (AI) and Cybersecurity. On one hand, AI advancements, for example, deep learning, can be introduced into cybersecurity to develop smart models for executing malware classification and intrusion detection and threatening intelligent detecting. Then again, AI models will confront different cyber threats, which will affect their sample, learning, and decision making. Along these lines, AI models need specific cybersecurity defense and assurance advances to battle ill-disposed machine learning, preserve protection in AI, secure united learning, and so forth. Because of the above two angles, we audit the crossing point of AI and Cybersecurity. To begin with, we sum up existing research methodologies regarding fighting cyber threats utilizing artificial intelligence, including receiving customary AI techniques and existing deep learning solutions. At that point, we analyze the counterattacks from which AI itself may endure, divide their qualities, and characterize the relating protection techniques. And finally, from the aspects of developing encrypted neural networks and understanding safe deep learning, we expand the current analysis on the most proficient method to develop a secure AI framework. This paper centers mainly around a central question: "By what means can artificial intelligence applications be utilized to upgrade cybersecurity?" From this question rises the accompanying set of sub-questions: What is the idea of artificial intelligence and what are its fields? What are the main areas of artificial intelligence that can uphold cybersecurity? What is the idea of data mining and how might it be utilized to upgrade cybersecurity? Hence, this paper is planned to reveal insight into the idea of artificial intelligence and its fields, and how it can profit by applications of AI brainpower to upgrade and improve cybersecurity. Using an analytical distinct approach of past writing on the matter, the significance of the need to utilize AI strategies to improve cybersecurity was featured and the main fields of application of artificial intelligence that upgrade cybersecurity, for example, machine learning, data mining, deep learning, and expert systems.  


Author(s):  
Ricardo A. Barrera-Cámara ◽  
Ana Canepa-Saenz ◽  
Jorge A. Ruiz-Vanoye ◽  
Alejandro Fuentes-Penna ◽  
Miguel Ángel Ruiz-Jaimes ◽  
...  

Various devices such as smart phones, computers, tablets, biomedical equipment, sports equipment, and information systems generate a large amount of data and useful information in transactional information systems. However, these generate information that may not be perceptible or analyzed adequately for decision-making. There are technology, tools, algorithms, models that support analysis, visualization, learning, and prediction. Data science involves techniques, methods to abstract knowledge generated through diverse sources. It combines fields such as statistics, machine learning, data mining, visualization, and predictive analysis. This chapter aims to be a guide regarding applicable statistical and computational tools in data science.


Sign in / Sign up

Export Citation Format

Share Document