Integrating Biological Data Sources and Data Analysis Tools through Mediators (available online only)

Author(s):  
J. F. Aldana ◽  
M. Roldán ◽  
I. Navas ◽  
A. J. Pérez ◽  
O. Trelles
2006 ◽  
Vol 36 (14) ◽  
pp. 1585-1604 ◽  
Author(s):  
J. F. Aldana ◽  
M. Roldán-Castro ◽  
I. Navas ◽  
M. M. Roldán-García ◽  
M. Hidalgo-Conde ◽  
...  

2020 ◽  
Vol 27 (38) ◽  
pp. 6523-6535 ◽  
Author(s):  
Antreas Afantitis ◽  
Andreas Tsoumanis ◽  
Georgia Melagraki

Drug discovery as well as (nano)material design projects demand the in silico analysis of large datasets of compounds with their corresponding properties/activities, as well as the retrieval and virtual screening of more structures in an effort to identify new potent hits. This is a demanding procedure for which various tools must be combined with different input and output formats. To automate the data analysis required we have developed the necessary tools to facilitate a variety of important tasks to construct workflows that will simplify the handling, processing and modeling of cheminformatics data and will provide time and cost efficient solutions, reproducible and easier to maintain. We therefore develop and present a toolbox of >25 processing modules, Enalos+ nodes, that provide very useful operations within KNIME platform for users interested in the nanoinformatics and cheminformatics analysis of chemical and biological data. With a user-friendly interface, Enalos+ Nodes provide a broad range of important functionalities including data mining and retrieval from large available databases and tools for robust and predictive model development and validation. Enalos+ Nodes are available through KNIME as add-ins and offer valuable tools for extracting useful information and analyzing experimental and virtual screening results in a chem- or nano- informatics framework. On top of that, in an effort to: (i) allow big data analysis through Enalos+ KNIME nodes, (ii) accelerate time demanding computations performed within Enalos+ KNIME nodes and (iii) propose new time and cost efficient nodes integrated within Enalos+ toolbox we have investigated and verified the advantage of GPU calculations within the Enalos+ nodes. Demonstration data sets, tutorial and educational videos allow the user to easily apprehend the functions of the nodes that can be applied for in silico analysis of data.


Solid Earth ◽  
2011 ◽  
Vol 2 (1) ◽  
pp. 53-63 ◽  
Author(s):  
S. Tavani ◽  
P. Arbues ◽  
M. Snidero ◽  
N. Carrera ◽  
J. A. Muñoz

Abstract. In this work we present the Open Plot Project, an open-source software for structural data analysis, including a 3-D environment. The software includes many classical functionalities of structural data analysis tools, like stereoplot, contouring, tensorial regression, scatterplots, histograms and transect analysis. In addition, efficient filtering tools are present allowing the selection of data according to their attributes, including spatial distribution and orientation. This first alpha release represents a stand-alone toolkit for structural data analysis. The presence of a 3-D environment with digitalising tools allows the integration of structural data with information extracted from georeferenced images to produce structurally validated dip domains. This, coupled with many import/export facilities, allows easy incorporation of structural analyses in workflows for 3-D geological modelling. Accordingly, Open Plot Project also candidates as a structural add-on for 3-D geological modelling software. The software (for both Windows and Linux O.S.), the User Manual, a set of example movies (complementary to the User Manual), and the source code are provided as Supplement. We intend the publication of the source code to set the foundation for free, public software that, hopefully, the structural geologists' community will use, modify, and implement. The creation of additional public controls/tools is strongly encouraged.


2011 ◽  
Vol 3 (2) ◽  
pp. 305-318 ◽  
Author(s):  
Michele Crosetto ◽  
Oriol Monserrat ◽  
María Cuevas ◽  
Bruno Crippa

2021 ◽  
Author(s):  
Scott A. Jarmusch ◽  
Justin J. J. van der Hooft ◽  
Pieter C. Dorrestein ◽  
Alan K. Jarmusch

This review covers the current and potential use of mass spectrometry-based metabolomics data mining in natural products. Public data, metadata, databases and data analysis tools are critical. The value and success of data mining rely on community participation.


Sign in / Sign up

Export Citation Format

Share Document