Design Considerations for Artificial Water Channel–Based Membranes

2018 ◽  
Vol 48 (1) ◽  
pp. 57-82 ◽  
Author(s):  
Woochul Song ◽  
Chao Lang ◽  
Yue-xiao Shen ◽  
Manish Kumar

Aquaporins (AQPs) are naturally occurring water channel proteins. They can facilitate water molecule translocation across cellular membranes with exceptional selectivity and high permeability that are unmatched in synthetic membrane systems. These unique properties of AQPs have led to their use as functional elements in membranes in recent years. However, the intricate nature of AQPs and concerns regarding their stability and processability have encouraged researchers to develop synthetic channels that mimic the structure and properties of AQPs and other biological water-conducting channels. These channels have been termed artificial water channels. This article reviews current progress and provides a historical perspective as well as an outlook toward developing scalable membranes based on artificial water channels.

2019 ◽  
Vol 21 (41) ◽  
pp. 22711-22721 ◽  
Author(s):  
Yong Liu ◽  
Harish Vashisth

Peptide appended pillar[5]arene (PAP) is an artificial water channel resembling biological water channel proteins, which has shown a significant potential for designing bioinspired water purification systems.


2018 ◽  
Vol 9 (1) ◽  
Author(s):  
Yue-xiao Shen ◽  
Woochul Song ◽  
D. Ryan Barden ◽  
Tingwei Ren ◽  
Chao Lang ◽  
...  

2018 ◽  
Vol 9 (1) ◽  
Author(s):  
Yue-xiao Shen ◽  
Woochul Song ◽  
D. Ryan Barden ◽  
Tingwei Ren ◽  
Chao Lang ◽  
...  

Author(s):  
Juergen Pfeffermann ◽  
Nikolaus Goessweiner-Mohr ◽  
Peter Pohl

AbstractVarious nanoscopic channels of roughly equal diameter and length facilitate single-file diffusion at vastly different rates. The underlying variance of the energetic barriers to transport is poorly understood. First, water partitioning into channels so narrow that individual molecules cannot overtake each other incurs an energetic penalty. Corresponding estimates vary widely depending on how the sacrifice of two out of four hydrogen bonds is accounted for. Second, entropy differences between luminal and bulk water may arise: additional degrees of freedom caused by dangling OH-bonds increase entropy. At the same time, long-range dipolar water interactions decrease entropy. Here, we dissect different contributions to Gibbs free energy of activation, ΔG‡, for single-file water transport through narrow channels by analyzing experimental results from water permeability measurements on both bare lipid bilayers and biological water channels that (i) consider unstirred layer effects and (ii) adequately count the channels in reconstitution experiments. First, the functional relationship between water permeabilities and Arrhenius activation energies indicates negligible differences between the entropies of intraluminal water and bulk water. Second, we calculate ΔG‡ from unitary water channel permeabilities using transition state theory. Plotting ΔG‡ as a function of the number of H-bond donating or accepting pore-lining residues results in a 0.1 kcal/mol contribution per residue. The resulting upper limit for partial water dehydration amounts to 2 kcal/mol. In the framework of biomimicry, our analysis provides valuable insights for the design of synthetic water channels. It thus may aid in the urgent endeavor towards combating global water scarcity.


1987 ◽  
Vol 33 (114) ◽  
pp. 239-242
Author(s):  
M. E. R. Walford

AbstractWe discuss the suggestion that small underwater transmitters might be used to illuminate the interior of major englacial water channels with radio waves. Once launched, the radio waves would naturally tend to be guided along the channels until attenuated by absorption and by radiative loss. Receivers placed within the channels or at the glacier surface could be used to detect the signals. They would provide valuable information about the connectivity of the water system. The electrical conductivity of the water is of crucial importance. A surface stream on Storglaciären, in Sweden, was found, using a low-frequency technique, to have a conductivity of approximately 4 × 10−4 S m−1. Although this is several hundred times higher than the conductivity of the surrounding glacier ice, the contrast is not sufficient to permit us simply to use electrical conductivity measurements to establish the connectivity of englacial water channels. However, the water conductivity is sufficiently small that, under favourable circumstances, radio signals should be detectable after travelling as much as a few hundred metres along an englacial water channel. In a preliminary field experiment, we demonstrated semi quantitatively that radio waves do indeed propagate as expected, at least in surface streams. We conclude that under-water radio transmitters could be of real practical value in the study of the englacial water system, provided that sufficiently robust devices can be constructed. In a subglacial channel, however, we expect the radio range would be much smaller, the environment much harsher, and the technique of less practical value.


Author(s):  
Arundhati Roy ◽  
Jie Shen ◽  
Himanshu Joshi ◽  
Woochul Song ◽  
Yu-Ming Tu ◽  
...  

1996 ◽  
Vol 270 (1) ◽  
pp. C12-C30 ◽  
Author(s):  
A. S. Verkman ◽  
A. N. van Hoek ◽  
T. Ma ◽  
A. Frigeri ◽  
W. R. Skach ◽  
...  

This review summarizes recent progress in water-transporting mechanisms across cell membranes. Modern biophysical concepts of water transport and new measurement strategies are evaluated. A family of water-transporting proteins (water channels, aquaporins) has been identified, consisting of small hydrophobic proteins expressed widely in epithelial and nonepithelial tissues. The functional properties, genetics, and cellular distributions of these proteins are summarized. The majority of molecular-level information about water-transporting mechanisms comes from studies on CHIP28, a 28-kDa glycoprotein that forms tetramers in membranes; each monomer contains six putative helical domains surrounding a central aqueous pathway and functions independently as a water-selective channel. Only mutations in the vasopressin-sensitive water channel have been shown to cause human disease (non-X-linked congenital nephrogenic diabetes insipidus); the physiological significance of other water channels remains unproven. One mercurial-insensitive water channel has been identified, which has the unique feature of multiple overlapping transcriptional units. Systems for expression of water channel proteins are described, including Xenopus oocytes, mammalian and insect cells, and bacteria. Further work should be directed at elucidation of the role of water channels in normal physiology and disease, molecular analysis of regulatory mechanisms, and water channel structure determination at atomic resolution.


Author(s):  
Li-Bo Huang ◽  
Maria Di Vincenzo ◽  
M. Göktuğ Ahunbay ◽  
Arie van der Lee ◽  
Didier Cot ◽  
...  

1996 ◽  
Vol 270 (5) ◽  
pp. F880-F885 ◽  
Author(s):  
P. Ford ◽  
G. Amodeo ◽  
C. Capurro ◽  
C. Ibarra ◽  
R. Dorr ◽  
...  

The ovarian oocytes from Bufo arenarum (BAO) but not those from Xenopus laevis (XLO) would have water channels (WC). We now report that the injection of the mRNA from BAO into the oocytes from XLO increased their water osmotic permeability (Pi) (reduced by 0.3 mM HgCl2 and reversed by 5 mM beta-mercaptoethanol). A 30-min challenge with progesterone induced, 18 h later, a reduction of the mercury-sensitive fraction of Pf in the BAO (but not in XLO). The mRNA from BAO pretreated with progesterone lost its capacity to induce WC in the XLO, but the hormone did not affect the expression of the WC in XLO previously injected with the mRNA from BAO. Pf was also measured in urinary bladders of BAO. Eighteen hours after a challenge with progesterone, a reduction in the hydrosmotic response to oxytocin was observed. Finally, the mRNA from the urinary bladder of BAO was injected into XLO. An increase in Pf was observed. This was not the case if, before the mRNA extraction, the bladders were treated with progesterone. We conclude that the BAO WC share progesterone sensitivity with the oxytocin-regulated water channel present in the toad urinary bladder.


Sign in / Sign up

Export Citation Format

Share Document