THE T CELL RECEPTOR: Critical Role of the Membrane Environment in Receptor Assembly and Function

2005 ◽  
Vol 23 (1) ◽  
pp. 101-125 ◽  
Author(s):  
Matthew E. Call ◽  
Kai W. Wucherpfennig
Author(s):  
Richard D. Klausner ◽  
Allan M. Weissman ◽  
Michal Baniyash ◽  
Juan S. Bonifacino ◽  
Lawrence E. Samelson

2002 ◽  
Vol 22 (8) ◽  
pp. 2673-2686 ◽  
Author(s):  
Liangtang Wu ◽  
Jun Fu ◽  
Shi-Hsiang Shen

ABSTRACT CD45 plays a critical role in T-cell receptor (TCR)-mediated signaling. In a yeast two-hybrid screen, SKAP55, the Src kinase-associated phosphoprotein of unknown function, was found as a substrate which associated with CD45 in vivo. Mutational analysis demonstrated the pivotal role of Tyr-232 in SKAP55 in the association with CD45. In Jurkat cells, anti-CD3 antibody stimulation promoted SKAP55 tyrosine phosphorylation and translocation from the cytoplasm to the membrane. Overexpression of SKAP55 in these cells induced transcriptional activation of the IL-2 promoter, while mutant SKAP55-Y232F totally suppressed the promoter activity. Furthermore, overexpression of SKAP55-Y232F also caused the tyrosine hyperphosphorylation of Fyn with a decreased kinase activity. Thus, SKAP55 is an essential adapter to couple CD45 with the Src family kinases for dephosphorylation and, thus, positively regulates TCR signaling.


2021 ◽  
Vol 22 (5) ◽  
pp. 2713
Author(s):  
Sun-Hye Shin ◽  
Kyung-Ah Cho ◽  
Hee-Soo Yoon ◽  
So-Yeon Kim ◽  
Hee-Yeon Kim ◽  
...  

(1) Background: six mammalian ceramide synthases (CerS1–6) determine the acyl chain length of sphingolipids (SLs). Although ceramide levels are increased in murine allergic asthma models and in asthmatic patients, the precise role of SLs with specific chain lengths is still unclear. The role of CerS2, which mainly synthesizes C22–C24 ceramides, was investigated in immune responses elicited by airway inflammation using CerS2 null mice. (2) Methods: asthma was induced in wild type (WT) and CerS2 null mice with ovalbumin (OVA), and inflammatory cytokines and CD4 (cluster of differentiation 4)+ T helper (Th) cell profiles were analyzed. We also compared the functional capacity of CD4+ T cells isolated from WT and CerS2 null mice. (3) Results: CerS2 null mice exhibited milder symptoms and lower Th2 responses than WT mice after OVA exposure. CerS2 null CD4+ T cells showed impaired Th2 and increased Th17 responses with concomitant higher T cell receptor (TCR) signal strength after TCR stimulation. Notably, increased Th17 responses of CerS2 null CD4+ T cells appeared only in TCR-mediated, but not in TCR-independent, treatment. (4) Conclusions: altered Th2/Th17 immune response with higher TCR signal strength was observed in CerS2 null CD4+ T cells upon TCR stimulation. CerS2 and very-long chain SLs may be therapeutic targets for Th2-related diseases such as asthma.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A185-A185
Author(s):  
Michelle Fleury ◽  
Derrick McCarthy ◽  
Holly Horton ◽  
Courtney Anderson ◽  
Amy Watt ◽  
...  

BackgroundAdoptive cell therapies have shown great promise in hematological malignancies but have yielded little progress in the context of solid tumors. We have developed T cell receptor fusion construct (TRuC®) T cells, which are equipped with an engineered T cell receptor that utilizes the full complement of TCR signaling subunits and recognizes tumor-associated antigens independent of HLA. In clinical trials, mesothelin (MSLN)-targeting TRuC-T cells (TC-210 or gavo-cel) have shown unprecedented results in patients suffering from advanced mesothelioma and ovarian cancer. To potentially increase the depth of response, we evaluated strategies that can promote intra-tumoral T cell persistence and function. Among the common ??-chain cytokines, IL-15 uniquely supports the differentiation and maintenance of memory T cell subsets by limiting terminal differentiation and conferring resistance to IL-2 mediated activation-induced cell death (AICD). In the studies described here, we evaluated the potential of IL-15 as an enhancement to TRuC-T cell phenotype, persistence and function against MSLN+ targets.MethodsPrimary human T cells were activated and transduced with a lentiviral vector encoding an anti-MSLN binder fused to CD3ε alone or co-expressed with a membrane-tethered IL-15rα/IL-15 fusion protein (IL-15fu). Transduced T cells were expanded for 9 days and characterized for expression of the TRuC, IL-15rα and memory phenotype before subjecting them to in vitro functional assays to evaluate cytotoxicity, cytokine production, and persistence. In vivo efficacy was evaluated in MHC class I/II deficient NSG mice bearing human mesothelioma xenografts.ResultsIn vitro, co-expression of the IL-15fu led to similar cytotoxicity and cytokine production as TC-210, but notably enhanced T-cell expansion and persistence upon repeated stimulation with MSLN+ cell lines. Furthermore, the IL-15fu-enhanced TRuC-T cells sustained a significantly higher TCF-1+ population and retained a stem-like phenotype following activation. Moreover, the IL-15fu-enhanced TRuCs demonstrated robust in vivo expansion and intra-tumoral accumulation as measured by ex vivo analysis of TRuC+ cells in the tumor and blood, with a preferential expansion of CD8+ T cells. Finally, IL-15fu-enhanced TRuC-T cells could be observed in the blood long after the tumors were cleared.ConclusionsThese pre-clinical studies suggest that the IL-15fu can synergize with TC-210 to increase the potency and durability of response in patients with MSLN+ tumors.Ethics ApprovalAll animal studies were approved by the respective Institutional Animal Care and Use Committees.


2021 ◽  
Author(s):  
Mark S. Lee ◽  
Peter J. Tuohy ◽  
Caleb Kim ◽  
Katrina Lichauco ◽  
Heather L. Parrish ◽  
...  

SUMMARYCD4+ T cells use T cell receptor (TCR)-CD3 complexes, and CD4, to respond to peptide antigens within MHCII molecules (pMHCII). We report here that, through ∼435 million years of evolution in jawed vertebrates, purifying selection has shaped motifs in the extracellular, transmembrane, and intracellular domains of eutherian CD4 that both enhance pMHCII responses and are coevolving with residues in an intracellular motif that inhibits pMHCII responses. Importantly, while CD4 interactions with the Src kinase, Lck, are classically viewed as the key determinant of CD4’s contribution to pMHCII responses, we found that without the inhibitory motif CD4-Lck interactions are not necessary for robust responses to pMHCII. In summary, motifs that mediate events on the outside and inside of CD4+ T cells coevolved to finetune the relay of pMHCII-specific information across the membrane. These results have implications for the evolution and function of complex transmembrane receptors and for biomimetic engineering.


Sign in / Sign up

Export Citation Format

Share Document