Role of Transcription Factors in Fetal Lung Development and Surfactant Protein Gene Expression

2000 ◽  
Vol 62 (1) ◽  
pp. 875-915 ◽  
Author(s):  
Carole R. Mendelson
1992 ◽  
Vol 263 (6) ◽  
pp. L634-L644 ◽  
Author(s):  
V. Boggaram ◽  
R. K. Margana

Surfactant protein C (SP-C), a hydrophobic protein of pulmonary surfactant is essential for surfactant function. Toward elucidating molecular mechanisms that mediate regulation of SP-C gene expression in rabbit lung, we isolated and characterized cDNAs encoding rabbit SP-C and studied the regulation of SP-C gene expression during fetal lung development and by adenosine 3',5'-cyclic monophosphate (cAMP) and dexamethasone in fetal lung tissues in vitro. We found that rabbit SP-C is highly homologous to SP-C of other species and is encoded by two mRNAs that differ by an insertion of 31 nucleotides in the 3' untranslated regions. SP-C mRNAs were classified into two types based on the nucleotide sequence; type I represents RNA without the 31 nucleotide insert and comprises approximately 80–90% of total SP-C mRNA content, whereas type II represents RNA containing the insert and comprises approximately 10–20% of total SP-C mRNA content. SP-C mRNAs were induced in a coordinate manner during fetal lung development and by cAMP and dexamethasone in fetal lung tissues in vitro. Southern hybridization analysis of genomic DNA suggested that SP-C mRNAs are encoded by a single gene. Polymerase [corrected] chain reaction-amplification of genomic DNA with oligonucleotide primers flanking the insertional sequence and sequence analysis of amplified DNA showed that SP-C mRNAs are produced by alternative use of 3' splice sites of intron 5 of SP-C gene.


2008 ◽  
Vol 84 ◽  
pp. S79-S80 ◽  
Author(s):  
Cristina Nogueira-Silva ◽  
Susana Nunes ◽  
Rute S. Moura ◽  
Jorge Correia-Pinto

1998 ◽  
Vol 274 (1) ◽  
pp. L87-L96 ◽  
Author(s):  
John M. Shannon ◽  
Tianli Pan ◽  
Karen E. Edeen ◽  
Larry D. Nielsen

We have investigated the role of the cytoskeleton in surfactant protein gene expression. Cytochalasin D (CD), colchicine (Col), or nocodazole (Noco) were tested on primary cultures of adult rat alveolar type II cells. Treatment with any of the drugs did not result in dramatic cell shape changes, but ultrastructural examination revealed that the cytoplasm of cells treated with CD was markedly disorganized; cells treated with Col did not exhibit such changes. Treatment with any of the three drugs resulted in a reduction in surfactant protein (SP) mRNAs. These decreases were not the result of cell toxicity, since overall protein synthesis was unimpaired by drug treatment. Washing the cells followed by an additional 2 days of culture resulted in a reaccumulation of SP mRNAs in CD-treated cells but not in Col-treated cells. Washing of Noco-treated cultures resulted in partial recovery. SP mRNA stability was estimated in the presence or absence of cytoskeleton-disrupting drugs. Disruption of either microfilaments or microtubules significantly affected the half-lives of mRNAs for SP-A, SP-B, and SP-C. These data support a role for the cytoskeleton in the maintenance of type II cell differentiation and suggest that the role of the cytoskeleton is at least in part to stabilize SP mRNAs.


PLoS ONE ◽  
2010 ◽  
Vol 5 (11) ◽  
pp. e14171 ◽  
Author(s):  
Narendranath Reddy Chintagari ◽  
Nili Jin ◽  
Li Gao ◽  
Yang Wang ◽  
Dong Xi ◽  
...  

2004 ◽  
Vol 286 (1) ◽  
pp. L165-L173 ◽  
Author(s):  
Lin Shan ◽  
Rodica L. Emanuel ◽  
Denise Dewald ◽  
John S. Torday ◽  
Nithiananthan Asokanathan ◽  
...  

Bombesin-peptide (BLP) immunoreactivity occurs at high levels in fetal lung. Previous studies showed that bombesin promotes fetal lung development. To test the hypothesis that such effects are mediated by known mammalian bombesin receptors [gastrin-releasing peptide (GRP)/bombesin-preferring receptor (GRPR), neuromedin B (NMB) receptor (NMBR), and the orphan bombesin receptor subtype-3 (BRS-3)], we analyzed the ontogeny of GRPR, NMBR, and BRS-3 gene expression in mouse lung. We examined the regulation of these three genes by dexamethasone and bombesin, which modulate lung development. Using incorporation of [3H]thymidine and [3H]choline, we then assessed whether GRP, NMB, and Leu8-phyllolitorin modulate lung growth and maturation in fetal lung explants. GRPR gene expression was detected predominantly in utero, whereas NMBR and BRS-3 genes were expressed from embryonic days 13–16 and on multiple postnatal days. All three mRNAs are present in airway epithelium and mesenchymal cells but occur in different relative patterns. These genes were regulated differently. Dexamethasone and bombesin increased GRPR mRNA, bombesin downregulated NMBR, and neither agent affected BRS-3. GRP increased incorporation of [3H]thymidine and [3H]choline in explants, whereas NMB induced cell proliferation and Leu8-phyllolitorin yielded variable results. Cumulative data suggest the involvement of multiple BLP receptors, including novel molecules, and argue against simple functional redundancy within this gene family during lung development.


Sign in / Sign up

Export Citation Format

Share Document