Cervical Spinal Cord Lesions in Multiple Sclerosis: T1-weighted Inversion-Recovery MR Imaging with Phase-Sensitive Reconstruction

Radiology ◽  
2008 ◽  
Vol 246 (1) ◽  
pp. 258-264 ◽  
Author(s):  
Aziz H. Poonawalla ◽  
Ping Hou ◽  
Flavia A. Nelson ◽  
Jerry S. Wolinsky ◽  
Ponnada A. Narayana
Diagnostics ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1424
Author(s):  
Esben Nyborg Poulsen ◽  
Anna Olsson ◽  
Stefan Gustavsen ◽  
Annika Reynberg Langkilde ◽  
Annette Bang Oturai ◽  
...  

Spinal cord lesions are included in the diagnosis of multiple sclerosis (MS), yet spinal cord MRI is not mandatory for diagnosis according to the latest revisions of the McDonald Criteria. We investigated the distribution of spinal cord lesions in MS patients and examined how it influences the fulfillment of the 2017 McDonald Criteria. Seventy-four patients with relapsing-remitting MS were examined with brain and entire spinal cord MRI. Sixty-five patients received contrast. The number and anatomical location of MS lesions were assessed along with the Expanded Disability Status Scale (EDSS). A Chi-square test, Fischer’s exact test, and one-sided McNemar’s test were used to test distributions. MS lesions were distributed throughout the spinal cord. Diagnosis of dissemination in space (DIS) was increased from 58/74 (78.4%) to 67/74 (90.5%) when adding cervical spinal cord MRI to brain MRI alone (p = 0.004). Diagnosis of dissemination in time (DIT) was not significantly increased when adding entire spinal cord MRI to brain MRI alone (p = 0.04). There was no association between the number of spinal cord lesions and the EDSS score (p = 0.71). MS lesions are present throughout the spinal cord, and spinal cord MRI may play an important role in the diagnosis and follow-up of MS patients.


Brain ◽  
2020 ◽  
Vol 143 (10) ◽  
pp. 2973-2987 ◽  
Author(s):  
Russell Ouellette ◽  
Constantina A Treaba ◽  
Tobias Granberg ◽  
Elena Herranz ◽  
Valeria Barletta ◽  
...  

Abstract We used 7 T MRI to: (i) characterize the grey and white matter pathology in the cervical spinal cord of patients with early relapsing-remitting and secondary progressive multiple sclerosis; (ii) assess the spinal cord lesion spatial distribution and the hypothesis of an outside-in pathological process possibly driven by CSF-mediated immune cytotoxic factors; and (iii) evaluate the association of spinal cord pathology with brain burden and its contribution to neurological disability. We prospectively recruited 20 relapsing-remitting, 15 secondary progressive multiple sclerosis participants and 11 age-matched healthy control subjects to undergo 7 T imaging of the cervical spinal cord and brain as well as conventional 3 T brain acquisition. Cervical spinal cord imaging at 7 T was used to segment grey and white matter, including lesions therein. Brain imaging at 7 T was used to segment cortical and white matter lesions and 3 T imaging for cortical thickness estimation. Cervical spinal cord lesions were mapped voxel-wise as a function of distance from the inner central canal CSF pool to the outer subpial surface. Similarly, brain white matter lesions were mapped voxel-wise as a function of distance from the ventricular system. Subjects with relapsing-remitting multiple sclerosis showed a greater predominance of spinal cord lesions nearer the outer subpial surface compared to secondary progressive cases. Inversely, secondary progressive participants presented with more centrally located lesions. Within the brain, there was a strong gradient of lesion formation nearest the ventricular system that was most evident in participants with secondary progressive multiple sclerosis. Lesion fractions within the spinal cord grey and white matter were related to the lesion fraction in cerebral white matter. Cortical thinning was the primary determinant of the Expanded Disability Status Scale, white matter lesion fractions in the spinal cord and brain of the 9-Hole Peg Test and cortical thickness and spinal cord grey matter cross-sectional area of the Timed 25-Foot Walk. Spinal cord lesions were localized nearest the subpial surfaces for those with relapsing-remitting and the central canal CSF surface in progressive disease, possibly implying CSF-mediated pathogenic mechanisms in lesion development that may differ between multiple sclerosis subtypes. These findings show that spinal cord lesions involve both grey and white matter from the early multiple sclerosis stages and occur mostly independent from brain pathology. Despite the prevalence of cervical spinal cord lesions and atrophy, brain pathology seems more strongly related to physical disability as measured by the Expanded Disability Status Scale.


2001 ◽  
Vol 8 (1) ◽  
pp. 15-19 ◽  
Author(s):  
K. L. Killeen ◽  
K. Shanmuganathan ◽  
D. Lefkowitz ◽  
S. E. Mirvis ◽  
E. Owens

2018 ◽  
Vol 25 (8) ◽  
pp. 1113-1123 ◽  
Author(s):  
Benoît Combès ◽  
Anne Kerbrat ◽  
Jean Christophe Ferré ◽  
Virginie Callot ◽  
Josefina Maranzano ◽  
...  

Background: Studies including patients with well-established multiple sclerosis (MS) have shown a significant and disability-related reduction in the cervical spinal cord (SC) magnetisation transfer ratio (MTR). Objectives: The objectives are to (1) assess whether MTR reduction is already measurable in the SC of patients with early relapsing–remitting multiple sclerosis (RRMS) and (2) describe its spatial distribution. Methods: We included 60 patients with RRMS <12  months and 34 age-matched controls at five centres. Axial T2*w, sagittal T2w, sagittal phase-sensitive inversion recovery (PSIR), 3DT1w, and axial magnetisation transfer (MT) images were acquired from C1 to C7. Lesions were manually labelled and mean MTR values computed both for the whole SC and for normal-appearing SC in different regions of interest. Results: Mean whole SC MTR was significantly lower in patients than controls (33.7 vs 34.9  pu, p  =  0.00005), even after excluding lesions (33.9  pu, p  =  0.0003). We observed a greater mean reduction in MTR for vertebral levels displaying the highest lesion loads (C2–C4). In the axial plane, we observed a greater mean MTR reduction at the SC periphery and barycentre. Conclusion: Cervical SC tissue damage measured using MTR is not restricted to macroscopic lesions in patients with early RRMS and is not homogeneously distributed.


2007 ◽  
Vol 17 (10) ◽  
pp. 2499-2504 ◽  
Author(s):  
Yoshimitsu Ohgiya ◽  
Masaki Oka ◽  
Akio Hiwatashi ◽  
Xiang Liu ◽  
Naoya Kakimoto ◽  
...  

PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0247813
Author(s):  
Adrien Goujon ◽  
Sonia Mirafzal ◽  
Kevin Zuber ◽  
Romain Deschamps ◽  
Jean-Claude Sadik ◽  
...  

Background and purpose To compare 3D-Fast Gray Matter Acquisition with Phase Sensitive Inversion Recovery (3D-FGAPSIR) with conventional 3D-Short-Tau Inversion Recovery (3D-STIR) and sagittal T1-and T2-weighted MRI dataset at 3 Tesla when detecting MS spinal cord lesions. Material and methods This prospective single-center study was approved by an institutional review board and enrolled participants from December 2016 to August 2018. Two neuroradiologists blinded to all data, individually analyzed the 3D-FGAPSIR and the conventional datasets separately and in random order. Discrepancies were resolved by consensus by a third neuroradiologist. The primary judgment criterion was the number of MS spinal cord lesions. Secondary judgment criteria included lesion enhancement, lesion delineation, reader-reported confidence and lesion-to-cord-contrast-ratio. A Wilcoxon’s test was used to compare the two datasets. Results 51 participants were included. 3D-FGAPSIR detected significantly more lesions than the conventional dataset (344 versus 171 respectively, p<0.001). Two participants had no detected lesion on the conventional dataset, whereas 3D-FGAPSIR detected at least one lesion. 3/51 participants had a single enhancing lesion detected by both datasets. Lesion delineation and reader-reported confidence were significantly higher with 3D-FGAPSIR: 4.5 (IQR 1) versus 2 (IQR 0.5), p<0.0001 and 4.5 (IQR 1) versus 2.5 (IQR 0.5), p<0.0001. Lesion-to-cord-contrast-ratio was significantly higher using 3D-FGAPSIR as opposed to 3D-STIR and T2: 1.4 (IQR 0,3) versus 0.4 (IQR 0,1) and 0.3 (IQR 0,1)(p = 0.04). Correlations with clinical data and inter- and intra-observer agreements were higher with 3D-FGAPSIR. Conclusion 3D-FGAPSIR improved overall MS spinal cord lesion detection as compared to conventional set and detected all enhancing lesions.


Sign in / Sign up

Export Citation Format

Share Document