Development of Interatomic Potential of Group IV Alloy Semiconductors for Lattice Dynamics Simulation

2016 ◽  
Vol 75 (8) ◽  
pp. 785-794 ◽  
Author(s):  
M. Tomita ◽  
A. Ogura ◽  
T. Watanabe
2002 ◽  
Vol 124 (3) ◽  
pp. 329-334 ◽  
Author(s):  
B. D. Wirth ◽  
V. V. Bulatov ◽  
T. Diaz de la Rubia

In copper and other face centered cubic metals, high-energy particle irradiation produces hardening and shear localization. Post-irradiation microstructural examination in Cu reveals that irradiation has produced a high number density of nanometer sized stacking fault tetrahedra. The resultant irradiation hardening and shear localization is commonly attributed to the interaction between stacking fault tetrahedra and mobile dislocations, although the mechanism of this interaction is unknown. In this work, we present results from a molecular dynamics simulation study to characterize the motion and velocity of edge dislocations at high strain rate and the interaction and fate of the moving edge dislocation with stacking fault tetrahedra in Cu using an EAM interatomic potential. The results show that a perfect SFT acts as a hard obstacle for dislocation motion and, although the SFT is sheared by the dislocation passage, it remains largely intact. However, our simulations show that an overlapping, truncated SFT is absorbed by the passage of an edge dislocation, resulting in dislocation climb and the formation of a pair of less mobile super-jogs on the dislocation.


2006 ◽  
Vol 13 (06) ◽  
pp. 841-846 ◽  
Author(s):  
SANJUN WANG ◽  
YOULIN SONG ◽  
XIANLIN ZHAO ◽  
XIANJUN WANG ◽  
JINHAI LIU ◽  
...  

We used the molecular dynamics simulation based on the Stillinger–Weber (SW) interatomic potential to calculate the high-index surface energies of surfaces containing any of the stereographic surfaces of silicon at zero temperature. An empirical formula based on the structural unit model was generalized for high-index surfaces. Our simulated results show that the generalized formula can give a good estimation of the surface energy and structural feature of the high-index surfaces not only on the edge of stereographic but also within it. Our simulation and empirical formula results reveal that the closest surface has the lowest energy, so the closest (101) surface has the lowest surface energy and the (101), (111) and (001) surfaces are the extremum on the curve of surface energy versus orientation angle. Both the theoretical simulation results and the empirical formula calculation results are consistent with the available first-principles theoretical data.


Sign in / Sign up

Export Citation Format

Share Document