An Electron Diffraction Study of Oxide Films Formed on High Temperature Oxidation Resistant Alloys

1947 ◽  
Vol 91 (1) ◽  
pp. 605
Author(s):  
J. W. Hickman ◽  
E. A. Gulbransen
1984 ◽  
Author(s):  
R. H. Tuffias ◽  
J. T. Harding ◽  
R. B. Kaplan

Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3764
Author(s):  
Krzysztof Aniołek ◽  
Adrian Barylski ◽  
Marian Kupka

High-temperature oxidation was performed at temperatures from 600 to 750 °C over a period of 24 h and 72 h. It was shown in the study that the oxide scale became more homogeneous and covered the entire surface as the oxidation temperature increased. After oxidation over a period of 24 h, the hardness of the produced layers increased as the oxidation temperature increased (from 892.4 to 1146.6 kgf/mm2). During oxidation in a longer time variant (72 h), layers with a higher hardness were obtained (1260 kgf/mm2). Studies on friction and wear characteristics of titanium were conducted using couples with ceramic balls (Al2O3, ZrO2) and with high-carbon steel (100Cr6) balls. The oxide films produced at a temperature range of 600–750 °C led to a reduction of the wear ratio value, with the lowest one obtained in tests with the 100Cr6 steel balls. Frictional contact of Al2O3 balls with an oxidized titanium disc resulted in a reduction of the wear ratio, but only for the oxide scales produced at 600 °C (24 h, 72 h) and 650 °C (24 h). For the ZrO2 balls, an increase in the wear ratio was observed, especially when interacting with the oxide films obtained after high-temperature oxidation at 650 °C or higher temperatures. The increase in wear intensity after titanium oxidation was also observed for the 100Cr6 steel balls.


2013 ◽  
Vol 542 ◽  
pp. 167-173 ◽  
Author(s):  
Jie He ◽  
Minghui Zhang ◽  
Jiechao Jiang ◽  
Jaroslav Vlček ◽  
Petr Zeman ◽  
...  

Author(s):  
ZHAO ZHANG ◽  
JIANING LI ◽  
ZHIYUN YE ◽  
CAINIAN JING ◽  
MENG WANG ◽  
...  

In this paper, the high-temperature oxidation resistant coating on the TA15 titanium alloy by laser cladding (LC) of the KF110-B4C-Ag mixed powders was analyzed in detail. The scanning electron microscope (SEM) and energy dispersive X-ray spectrometer (EDS) images indicated that a good metallurgy bond between the fabricated coating/TA15 was formed; also the fine/compact microstructure was produced after a cladding process. The oxidation mass gain of TA15 was higher than that of the coating after LC process, which were 3.72 and 0.91[Formula: see text]mg[Formula: see text]cm[Formula: see text], respectively, at 60[Formula: see text]h, greatly enhancing the high temperature oxidation resistance.


2019 ◽  
Vol 25 (4) ◽  
pp. 394-400
Author(s):  
Hong LI ◽  
Chengzhi ZHAO ◽  
Tao YAN ◽  
Chao DING ◽  
Hexin ZHANG ◽  
...  

The research is focused on a novel aluminum and copper-containing heat-resistant steel. The steel was designed by the material performance simulation software JmatPro, performed high-temperature oxidation tests at 650 °C and 700 °C atmospheric conditions, and analyzed the high-temperature oxidation processes and its mechanisms.The phase transtions and surface morphology of the oxide films were studied using X-ray diffraction (XRD), electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS). The results showed that the equilibrium phase of the test steel is composed of γ phase and δ phase at 1050 °C and tranforms to tempered martensite and δ-Fe mixed structure after heat treatment. The preferential oxidation of Fe and Cr and the internal oxidation of Al occurred during the high temperature oxidation of the test steel. The oxide films were formed with various shape and weak bonding properties after high-temperature oxidation at 650℃. To the contrary, the oxide films more regular and evenly distributed, and has a certain protective effect after high-temperature oxidation at 700 ℃. The oxide films were divided into two layers, Fe2O3 is main element in the outer layer, the inner layer is mainly consisting the oxide of Cr. However, the addition of Cu element can promote the diffusion of Al and Si elements, which is beneficial to the formation of Al2O3 and SiO2 protective oxide films and excellent in high temperature oxidation resistance.


Sign in / Sign up

Export Citation Format

Share Document