scholarly journals Screening Highly Efficient Hetero-Diatomic Doped PC6 Electrocatalysts For Selective Nitrogen Reduction to Ammonia

Author(s):  
Qiuling Jiang ◽  
Yanan Meng ◽  
Kai Li ◽  
Ying Wang ◽  
Zhijian Wu

Abstract Searching for highly efficient electrocatalysts toward nitrogen reduction reaction (NRR) is an important but challenging task for nitrogen utilization in industry. Here we have systematically designed a series of hetero-diatomic catalysts (DACs), in which transition metal atoms (Ti, V, Cr, Mn, Fe, Co, and Ni) are dispersed on PC6 monolayer to form AB@PC6 (A, B= Ti, V, Cr, Mn, Fe, Co, and Ni). Employing density functional theory (DFT) calculation, the V and Cr co-doped PC6 monolayer (VCr@PC6) among the 21 AB@PC6 catalysts is the most promising catalyst due to its low limiting potential of -0.41V, relatively low energy barrier, and high ammonia selectivity toward hydrogen evolution reaction (HER). Insights on the high NRR activity of VCr@PC6 are also explored. The synergistic effect in DACs facilitates the electron transfer from metal pairs to PC6 monolayer, as well as suppresses the HER, leading to high selectivity and Faradaic efficiency. This work not only aims to seek the efficient DACs towards N2 reduction but also provides insights towards synergistic effects between hetero-atoms for the rational design of DACs.

2010 ◽  
Vol 21 (12) ◽  
pp. 1469-1477 ◽  
Author(s):  
M. SAMAH ◽  
B. BOUGHIDEN

Structures, binding energies, magnetic and electronic properties endohedrally doped C 20 fullerenes by metallic atoms ( Fe , Co , Ti and V ) have been obtained by pseudopotential density functional theory. All M @ C 20, except Co @ C 20, are more stable than the undoped C 20 cage. The magnetic moment values are 1 and 2μB. These values and semiconductor behavior give to these compounds interesting feature in several technological applications. Titanium doped C 20 has a same magnetic moment than the isolated Ti atom. Hybridization process in the Co doped C 20 fullerene is most strong than in other doped cages. Electrical and magnetic dipoles calculated in the iron doped C 20 are very strong compared with other clusters.


2019 ◽  
Vol 7 (24) ◽  
pp. 14510-14518 ◽  
Author(s):  
Qianyi Cui ◽  
Gangqiang Qin ◽  
Weihua Wang ◽  
Geethalakshmi K. R. ◽  
Aijun Du ◽  
...  

A Mo-based MOF is an efficient electrocatalyst for the N2 reduction reaction with a low overpotential of 0.18 V.


2020 ◽  
Vol 6 (11) ◽  
pp. eaaz0510 ◽  
Author(s):  
Yonggang Yao ◽  
Zhenyu Liu ◽  
Pengfei Xie ◽  
Zhennan Huang ◽  
Tangyuan Li ◽  
...  

Multi-elemental alloy nanoparticles (MEA-NPs) hold great promise for catalyst discovery in a virtually unlimited compositional space. However, rational and controllable synthesize of these intrinsically complex structures remains a challenge. Here, we report the computationally aided, entropy-driven design and synthesis of highly efficient and durable catalyst MEA-NPs. The computational strategy includes prescreening of millions of compositions, prediction of alloy formation by density functional theory calculations, and examination of structural stability by a hybrid Monte Carlo and molecular dynamics method. Selected compositions can be efficiently and rapidly synthesized at high temperature (e.g., 1500 K, 0.5 s) with excellent thermal stability. We applied these MEA-NPs for catalytic NH3 decomposition and observed outstanding performance due to the synergistic effect of multi-elemental mixing, their small size, and the alloy phase. We anticipate that the computationally aided rational design and rapid synthesis of MEA-NPs are broadly applicable for various catalytic reactions and will accelerate material discovery.


2008 ◽  
Vol 15 (05) ◽  
pp. 567-579 ◽  
Author(s):  
WEI FAN ◽  
XIN-GAO GONG

Based on the Density Functional Theory (DFT) with noncollinear-magnetism formulations, we have calculated the magnetism of single 3d transition-metal atoms and the magnetic anisotropies of supported Ni chains on the Au(110)-(1 × 2) surface. Our results for single absorbed 3d transition-metal atoms show that the surface relaxations enhance the orbital moments of left-end elements (Ti, V) and quenches the orbital moments of right-end elements (Fe, Co, Ni) on the Au(110)-(1 × 2) surface. The magnetic anisotropies of Ni atomic chains on the surface are closely related to orbital quenching. The easy magnetized axes change from the direction parallel to the chains to the direction perpendicular to the Ni chains when they absorb on the surface.


2018 ◽  
Vol 54 (42) ◽  
pp. 5323-5325 ◽  
Author(s):  
Xiaoping Zhang ◽  
Rong-Mei Kong ◽  
Huitong Du ◽  
Lian Xia ◽  
Fengli Qu

A VN nanowire array on carbon cloth (VN/CC) as a high-performance catalyst for the nitrogen reduction reaction (NRR) affords high ammonia yield (2.48 × 10−10 mol−1 s−1 cm−2) and faradaic efficiency (3.58%) at −0.3 V versus RHE in 0.1 M HCl.


2021 ◽  
Vol 77 ◽  
pp. 244-251
Author(s):  
Lakshitha Jasin Arachchige ◽  
Yongjun Xu ◽  
Zhongxu Dai ◽  
Xiao Li Zhang ◽  
Feng Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document