A Model for Analysis of the Porous Nickel Electrode Polarization in the Molten Carbonate Electrolysis Cell

2017 ◽  
Vol 164 (8) ◽  
pp. H5197-H5201
Author(s):  
Lan Hu ◽  
Henrik Ekström ◽  
Göran Lindbergh ◽  
Carina Lagergren
1991 ◽  
Vol 20-28 ◽  
pp. 615-625
Author(s):  
G. Paruthimal Kalaignan ◽  
V.S. Muralidharan ◽  
K.I. Vasu

1994 ◽  
Vol 19 (8) ◽  
pp. 713-718 ◽  
Author(s):  
M ALSALEH ◽  
S GULTEKIN ◽  
A ALZAKRI ◽  
H CELIKER

2021 ◽  
Vol 9 ◽  
Author(s):  
Stefano Frangini ◽  
Massimilano Della Pietra ◽  
Livia Della Seta ◽  
Claudia Paoletti ◽  
Juan Pedro Pérez-Trujillo

The possibility of producing hydrogen from molten carbonate steam electrolysis using the well-established Molten Carbonate Fuel Cell (MCFC) technology was explored in this work. For this purpose, a 81 cm2 MCFC single cell assembled with conventional cell materials was operated under alternated fuel cell/electrolysis conditions at 650°C in a binary eutectic Li2CO3-K2CO3 electrolyte for about 400 h after an initial period of 650 h in which the cell worked only in the usual MCFC mode. A rapid cell performance loss in terms of cell internal resistance and electrode polarization was observed as soon as the cell started to work in the alternated fuel cell/electrolysis mode. After test completion, a post-mortem analysis was conducted to correlate the electrochemical response with cell materials degradation. Cell materials of the reverse cell were compared against a reference single cell that was assembled with the same materials and operated only in the fuel cell mode under comparable experimental conditions. Post-mortem analysis allowed to identify several serious stability issues of conventional MCFC materials when used in alternated operation modes. Thus, although the electrolyte matrix appeared almost unaffected, a significant amount of dissolved nickel was found in the matrix indicating that electrolysis operations promote an increasing chemical instability of the NiO oxygen electrode. A serious reduction of electrode porosity was also observed in both NiO oxygen and Ni metal fuel electrodes, which could explain the higher polarization resistance of the reversible cell in comparison to the reference MCFC cell. Furthermore, the oxygen current collector made with conventional 316L stainless steel was found to be seriously corroded under the alternated operation modes. Thus, the observed rapid increase in internal resistance in the reverse cell could be caused, at least in part, by an increased contact resistance between the oxygen electrode and the corroding current collector structure. Possible solutions for improving stability of electrodes and of the oxygen current collector in reverse MCFC cells were proposed and discussed in the final part of the work.


Author(s):  
Luca Mastropasqua ◽  
Francesca Baia ◽  
Luca Conti ◽  
Stefano Campanari

One of the biggest issues associated to Carbon Capture and Utilisation (CCU) applications involves the exploitation of the captured CO2 as a valuable consumable. An interesting application is the conversion of CO2 into renewable fuels via electrochemical reduction at high temperature. Still unexplored in the literature is the possibility of employing a Molten Carbonate Electrolysis Cell (MCEC) to directly converting CO2 and H2O into H2, CO and eventually CH4, if a methanation process is envisaged. The introduction of this concept into a reversible system — similarly to the process proposed with reversible solid-oxide cells — allows the creation of a cycle which oxidises natural gas to produce CO2 and then employs the same CO2 and excess renewable energy to produce renewable natural gas. The result is a system able to perform electrochemical storage of excess renewable energy (from wind or solar) and if/when required sell renewable natural gas to the grid. In this work, a simulation of a reversible Molten Carbonate Cell (rMCC) is proposed. The reference MCFC technology considered is that from FuelCell Energy (USA) whose smaller stack is rated at 375 kW (DC). A simplified 0D stack model is developed and calibrated against experimental data. The Balance of Plant (BoP) is in common between the two operation modes MCFC and MCEC. In the former case, natural gas is electrochemically oxidised in the fuel compartment which receives carbonate ions (CO32−) from the air compartment, fed with air enriched with CO2 produced during electrolysis mode. The CO2 in the anode off gas stream is then purified and stored. In electrolysis mode, the stored CO2 is mixed with process H2O and sent to the fuel compartment of the MCEC; here, electrolysis and internal methanation occur. An external chemical reactor finalises the production of methane for either natural gas grid injection or storage and reuse in fuel cell mode. A thermodynamic analysis of the system is performed the yearly round-trip efficiency is assessed considering an assumed availability operating time of 7000 h/y. Finally, the overall green-house gas emission is assessed.


Sign in / Sign up

Export Citation Format

Share Document