First-Principles Calculations of Charge Transfer Transitions of Eu3+ in Y2O3 and Y2O2S

2020 ◽  
Vol 9 (6) ◽  
pp. 066005
Author(s):  
Shota Takemura ◽  
K. C. Mishra ◽  
J. Collins ◽  
Kazuyoshi Ogasawara
2020 ◽  
Vol 7 (12) ◽  
pp. 200723
Author(s):  
Hai Duong Pham ◽  
Wu-Pei Su ◽  
Thi Dieu Hien Nguyen ◽  
Ngoc Thanh Thuy Tran ◽  
Ming-Fa Lin

The essential properties of monolayer silicene greatly enriched by boron substitutions are thoroughly explored through first-principles calculations. Delicate analyses are conducted on the highly non-uniform Moire superlattices, atom-dominated band structures, charge density distributions and atom- and orbital-decomposed van Hove singularities. The hybridized 2 p z –3 p z and [2s, 2 p x , 2 p y ]–[3s, 3 p x , 3 p y ] bondings, with orthogonal relations, are obtained from the developed theoretical framework. The red-shifted Fermi level and the modified Dirac cones/ π bands/ σ bands are clearly identified under various concentrations and configurations of boron-guest atoms. Our results demonstrate that the charge transfer leads to the non-uniform chemical environment that creates diverse electronic properties.


Nanomaterials ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 816 ◽  
Author(s):  
Chao Zhang ◽  
Yu Cao ◽  
Xing Dai ◽  
Xian-Yong Ding ◽  
Leilei Chen ◽  
...  

First-principles calculations were performed to investigate the effects of boron/nitrogen dopant on the geometry, electronic structure and magnetic properties of the penta-graphene system. It was found that the electronic band gap of penta-graphene could be tuned and varied between 1.88 and 2.12 eV depending on the type and location of the substitution. Moreover, the introduction of dopant could cause spin polarization and lead to the emergence of local magnetic moments. The main origin of the magnetic moment was analyzed and discussed by the examination of the spin-polarized charge density. Furthermore, the direction of charge transfer between the dopant and host atoms could be attributed to the competition between the charge polarization and the atomic electronegativity. Two charge-transfer mechanisms worked together to determine which atoms obtained electrons. These results provide the possibility of modifying penta-graphene by doping, making it suitable for future applications in the field of optoelectronic and magnetic devices.


2018 ◽  
Vol 20 (7) ◽  
pp. 4953-4961 ◽  
Author(s):  
Efracio Mamani Flores ◽  
Rogério Almeida Gouvea ◽  
Maurício Jeomar Piotrowski ◽  
Mário Lucio Moreira

We performed first-principles calculations within PBE and PBE+U approximations to study ZnO and ZnX bulk systems and ZnO/ZnX interfaces (X = S, Se or Te), to the better comprehension of charge transference through the interface.


2012 ◽  
Vol 602-604 ◽  
pp. 870-873 ◽  
Author(s):  
Wei Zhao ◽  
Qing Yuan Meng

The adsorption of methane (CH4) molecule on the pristine and Al-doped (4, 8) graphene was investigated via the first-principles calculations. The results demonstrated that, in comparison to the adsorption of a CH4molecule on the pristine graphene sheet, a relatively stronger adsorption was observed between the CH4molecule and Al-doped graphene with a shorter adsorption distance, larger binding energy and more charge-transfer from the graphene surface to the CH4molecule. Therefore, the Al-doped graphene can be expected to be a novel sensor for the detection of CH4molecules in future applications.


Sign in / Sign up

Export Citation Format

Share Document