scholarly journals Rich p -type-doping phenomena in boron-substituted silicene systems

2020 ◽  
Vol 7 (12) ◽  
pp. 200723
Author(s):  
Hai Duong Pham ◽  
Wu-Pei Su ◽  
Thi Dieu Hien Nguyen ◽  
Ngoc Thanh Thuy Tran ◽  
Ming-Fa Lin

The essential properties of monolayer silicene greatly enriched by boron substitutions are thoroughly explored through first-principles calculations. Delicate analyses are conducted on the highly non-uniform Moire superlattices, atom-dominated band structures, charge density distributions and atom- and orbital-decomposed van Hove singularities. The hybridized 2 p z –3 p z and [2s, 2 p x , 2 p y ]–[3s, 3 p x , 3 p y ] bondings, with orthogonal relations, are obtained from the developed theoretical framework. The red-shifted Fermi level and the modified Dirac cones/ π bands/ σ bands are clearly identified under various concentrations and configurations of boron-guest atoms. Our results demonstrate that the charge transfer leads to the non-uniform chemical environment that creates diverse electronic properties.

2010 ◽  
Vol 24 (24) ◽  
pp. 4851-4859
Author(s):  
KAIHUA HE ◽  
GUANG ZHENG ◽  
GANG CHEN ◽  
QILI CHEN ◽  
MIAO WAN ◽  
...  

The structural and electronic properties of BN(5, 5) and C(5, 5) nanotubes under pressure are studied by using first principles calculations. In our study range, BN(5, 5) undergoes obvious elliptical distortion, while for C(5, 5) the cross section first becomes an ellipse and then, under further pressure, is flattened. The band gap of BN(5, 5) decreases with increasing pressure, which is inverse to that of zinc blende BN, whereas for C(5, 5) the metallicity is always preserved under high pressure. The population of charge density indicates that intertube bonding is formed under pressure. We also find that BN(5, 5) may collapse, and a new polymer material based on C(5, 5) is formed by applying pressure.


Applying first-principles calculations, the investigation of the geometrical and electronic properties of Pr adsorption armchair silicene nanoribbons structure has been established. The results show that the bandgap doped Pr has been changed, which is the case for chemical adsorption on the surface of ASiNRs; this material became metallic with the peak of valance band contact fermi level. Moreover, the survey to find the optimal height 1.82 Å of Pr and 2.24 Å bond length Si-Si, and Si-Si-Si bond angle 108005’, energy adsorption is -7.65 eV, buckling is 0.43 Å with structure stability close to the pristine case, has brought good results for actively creating newly applied materials for the spintronic and optoelectronics field in the future.


2015 ◽  
Vol 645-646 ◽  
pp. 325-329
Author(s):  
Jin Long Tang ◽  
Jun Nan Zhong ◽  
Cai Wen

Based on first-principles calculations, we have investigated atomic and electronic structures of 4H-SiC crystal doped by N, P and As elements as n-type dopants. We have obtained the bond lengths of the optimization system, as well as the impurity levels, the band structure and the density of states. The results show that the higher impurity level above the Fermi level is observed when 4H-SiC doped by N with concentration as 6.25% in these dopants, and the band gap of 4H-SiC decreases while the doping concentration or the atomic number of dopant increases.


2018 ◽  
Vol 20 (18) ◽  
pp. 12939-12947 ◽  
Author(s):  
Andrey A. Kistanov ◽  
Yongqing Cai ◽  
Kun Zhou ◽  
Sergey V. Dmitriev ◽  
Yong-Wei Zhang

A proper adoption of the n- or p-type dopants allows for the modulation of the work function, the Fermi level pinning, the band bending, and the photo-adsorbing efficiency near the InSe surface/interface.


Micromachines ◽  
2019 ◽  
Vol 10 (5) ◽  
pp. 309
Author(s):  
Min Luo ◽  
Bin Yu ◽  
Yu-e Xu

First-principles calculations were used to investigate the electronic properties of the SiC/GeC nanosheet (the thickness was about 8 Å). With no electric field (E-field), the SiC/GeC nanosheet was shown to have a direct bandgap of 1.90 eV. In the band structure, the valence band of the SiC/GeC nanosheet was mainly made up of C-p, while the conduction band was mainly made up of C-p, Si-p, and Ge-p, respectively. Application of the E-field to the SiC/GeC nanosheet was found to facilitate modulation of the bandgap, regularly reducing it to zero, which was linked to the direction and strength of the E-field. The major bandgap modulation was attributed to the migration of C-p, Si-p, and Ge-p orbitals around the Fermi level. Our conclusions might give some theoretical guidance for the development and application of the SiC/GeC nanosheet.


2018 ◽  
Vol 25 (06) ◽  
pp. 1850117
Author(s):  
PING WU ◽  
NAIQIANG YIN ◽  
WENJING CHENG ◽  
PENG LI

The morphology, stability and electronic properties of Pd and Au monolayers supported by MoS2 substrate have been investigated by using the first principles calculations based on periodic density functional theory (DFT). The results demonstrated that the most stable site is top of Mo top of S ([Formula: see text]) for the adsorption of Pd and Au monolayers on MoS2. We found that Pd/MoS2 with lower adsorption energy of [Formula: see text]0.54[Formula: see text]eV is energetically more stable than Au/MoS2. Due to the emergence of impurities state in the bandgap of MoS2, Pd/MoS2 and Au/MoS2 display metallic character upon coating of metal monolayers. We demonstrated that the Pd monolayer strongly hybrids with underlying Mo and S around the Fermi level, which is achieved by the intermediate Pd–S–Mo hybridized chains. On the contrary, intensity of impurities states around the fermi level is much weaker for Au/MoS2, which can be explained by weak hybridizations between sp state of Au and 4[Formula: see text] state of nearest neighboring Mo. The calculated results demonstrated that work functions are markedly modulated to 4.99 and 6.23[Formula: see text]eV after coating of Pd and Au monolayer, respectively, which can be qualitatively explained by the fact that Pd (as accepter) received charge from the MoS2 host, while Au donated charge to the host. These findings promise potential applications in the fields of nanoelectronics in future, such as it's helpful to choose suitable electrode materials for MoS2-based nanodevices.


RSC Advances ◽  
2014 ◽  
Vol 4 (90) ◽  
pp. 48848-48859 ◽  
Author(s):  
Nan Feng ◽  
Wenbo Mi ◽  
Xiaocha Wang ◽  
Haili Bai

n- and p-type doping of MgO are induced in contact with FeIFeII and (FeII)2N terminations of Fe4N, respectively. The metallic characteristics are induced in BaTiO3 by contact with FeIFeII termination, whereas p- and n-type doping appears in (FeII)2N/BaO and (FeII)2N/TiO2 interfaces, respectively. The interfacial dipole due to charge rearrangement may induce the Fermi level pinning in Fe4N/MgO and (FeII)2N/BaTiO3 interfaces. The deposition of Fe4N on BiFeO3 can result in a metallic BiFeO3.


2007 ◽  
Vol 21 (10) ◽  
pp. 1705-1714 ◽  
Author(s):  
WEI SONG ◽  
JING LU ◽  
ZHENGXIANG GAO ◽  
MING NI ◽  
LUNHUI GUAN ◽  
...  

The structural and electronic properties of potential one dimensional (1D) superconductor — K x C 60 chain encapsulated inside a single-walled carbon nanotube is studied using first principles calculations. The stoichiometry of K to C 60 of the 1D K x C 60 crystal can reach 9, in contrast to a maximal stoichiometry of 6 found in the K doped bulk fullerides. The K 4s electrons are completely ionized, and fill chiefly the C 60-derived bands in a nonrigid way. The density of states at the Fermi level of the encapsulated 1D K x C 60 crystal is comparable to that in K doped bulk fullerides.


2021 ◽  
Vol 606 ◽  
pp. 412825
Author(s):  
Wei-Hong Liu ◽  
Wei Zeng ◽  
Fu-Sheng Liu ◽  
Bin Tang ◽  
Qi-Jun Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document