scholarly journals Erratum: “The ‘Generalized Skettrup Model’ and Lattice Thermal Capacity of Graphene, h-BN, MoS2, and WS2 Flakes” by Valeri Ligatchev

Author(s):  
Valeri LIGATCHEV
Keyword(s):  
2020 ◽  
pp. 29-34
Author(s):  
Alexandr V. Kostanovskiy ◽  
Margarita E. Kostanovskaya

Work is devoted to studying of a linear mode thermodynamic – a mode which is actively investigated now. One of the main concepts of a linear mode – local entropy rate of production. The purpose of given article consists in expansion of a circle of problems for which it is possible to calculate a local entropy rate of production, namely its definition, using the experimental “time-temperature” curves of heating/cooling. “Time-temperature” curves heating or cooling are widely used in non-stationary thermophysical experiments at studying properties of substances and materials: phase transitions of the first and second sort, a thermal capacity, thermal diffusivity. The quantitative substantiation of the formula for calculation of the local entropy rate of production in which it is used thermogram (change of temperature from time) which is received by a method of pulse electric heating is resulted. Initial time dependences of electric capacity and temperature are measured on the sample of niobium in a microsecond range simultaneously. Conformity of two dependences of the local entropy rate of production from time is shown: one is calculated under the known formula in which the brought electric capacity is used; another is calculated, using the thermogram.


2021 ◽  
pp. 1420326X2199462
Author(s):  
Stefano Ridolfi ◽  
Susanna Crescenzi ◽  
Fabiana Zeli ◽  
Stefano Perilli ◽  
Stefano Sfarra

This work is centred on an ancient Italian church. Since 2011, a restoration plan has been undertaken by following sequential phases. The methodological approach to restoration was guided by environmental monitoring campaigns. In particular, two thermo-hygrometric campaigns were carried out during the warm months of the years 2015 and 2016. The first set of measurements was executed during the restoration of facades and roofs, making it possible to reach even areas that are usually difficult to access. The second set was performed to evaluate the indoor thermo-hygrometric conditions following the work of the previous year. This was intended to assess their differences in variability, the influence of the outdoor environment and any real and perceived improvement. Results demonstrate that thermal images helped in identifying both the heat sources causing thermal discomforts and the good thermal capacity of masonries. Concerning the heat index (HI), the church showed an improvement in the trend of malaise perceived by people during the second summer period (∼2°C lower than 2015). Finally, in the last microclimate monitoring, the roof structure no longer acted as an amplifier for daily temperature excursions.


Energy ◽  
2021 ◽  
Vol 219 ◽  
pp. 119663
Author(s):  
Martina Capone ◽  
Elisa Guelpa ◽  
Vittorio Verda

Energies ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2851 ◽  
Author(s):  
Kenneth Leerbeck ◽  
Peder Bacher ◽  
Rune Grønborg Junker ◽  
Anna Tveit ◽  
Olivier Corradi ◽  
...  

An optimized heat pump control for building heating was developed for minimizing CO 2 emissions from related electrical power generation. The control is using weather and CO 2 emission forecasts as inputs to a Model Predictive Control (MPC)—a multivariate control algorithm using a dynamic process model, constraints and a cost function to be minimized. In a simulation study, the control was applied using weather and power grid conditions during a full-year period in 2017–2018 for the power bidding zone DK2 (East, Denmark). Two scenarios were studied; one with a family house and one with an office building. The buildings were dimensioned based on standards and building codes/regulations. The main results are measured as the CO 2 emission savings relative to a classical thermostatic control. Note that this only measures the gain achieved using the MPC control, that is, the energy flexibility, not the absolute savings. The results show that around 16% of savings could have been achieved during the period in well-insulated new buildings with floor heating. Further, a sensitivity analysis was carried out to evaluate the effect of various building properties, for example, level of insulation and thermal capacity. Danish building codes from 1977 and forward were used as benchmarks for insulation levels. It was shown that both insulation and thermal mass influence the achievable flexibility savings, especially for floor heating. Buildings that comply with building codes later than 1979 could provide flexibility emission savings of around 10%, while buildings that comply with earlier codes provided savings in the range of 0–5% depending on the heating system and thermal mass.


The liquefaction of helium by Kammerlingh Onnes has led in the past thirty years to discoveries of the greatest importance to the study of the solid state. In spite of this, very few laboratories are now equipped with the apparatus necessary for the production of liquid helium. It is therefore very desirable that the complicated technique necessary for its production should be simplified to allow of its more extensive use. In this paper we shall describe a more efficient liquefier, based on an adiabatic principle, which we hope will considerably simplify the production of liquid helium for scientific work. At present two principal methods are used for the cooling and liquefying of gases. The first method is based on cooling produced by adiabatic expansion where the expanding gas is cooled by doing external work. This phenomenon was observed by Clèment and Desormes in 1819 when they discovered the cooling of a gas in a container when its pressure was reduced by letting out some of the gas through a tap. It can be shown that on expanding, the gas remaining in the container has done work in communicating kinetic energy to the escaped gas, and therefore has been cooled adiabatically. Olszewski in 1895 applied this method to the liquefaction of hydrogen; he compressed the gas to 190 atmospheres and pre-cooled it with liquid oxygen boiling at reduced pressure (-211°C); on releasing the pressure, he observed a fog of liquid hydrogen drops. From this experiment he was able to determine the critical data for hydrogen. This method has also been used recently by Simon for liquefying helium. Simon took advantage of the fact that at very low temperatures the thermal capacity of the container is so small that it practically absorbs no cold from the liquefied helium. The limitations of this method are that it can only conveniently be applied for obtaining small amounts of liquid helium; it is not suited for a continuous output of helium, and also there is necessarily a loss of cold due to the gas which leaves the container. The method is also complicated by the fact that high pressures are required, and that pre-cooling with liquid hydrogen boiling at reduced pressure is necessary.


Sign in / Sign up

Export Citation Format

Share Document