scholarly journals Control of Heat Pumps with CO2 Emission Intensity Forecasts

Energies ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2851 ◽  
Author(s):  
Kenneth Leerbeck ◽  
Peder Bacher ◽  
Rune Grønborg Junker ◽  
Anna Tveit ◽  
Olivier Corradi ◽  
...  

An optimized heat pump control for building heating was developed for minimizing CO 2 emissions from related electrical power generation. The control is using weather and CO 2 emission forecasts as inputs to a Model Predictive Control (MPC)—a multivariate control algorithm using a dynamic process model, constraints and a cost function to be minimized. In a simulation study, the control was applied using weather and power grid conditions during a full-year period in 2017–2018 for the power bidding zone DK2 (East, Denmark). Two scenarios were studied; one with a family house and one with an office building. The buildings were dimensioned based on standards and building codes/regulations. The main results are measured as the CO 2 emission savings relative to a classical thermostatic control. Note that this only measures the gain achieved using the MPC control, that is, the energy flexibility, not the absolute savings. The results show that around 16% of savings could have been achieved during the period in well-insulated new buildings with floor heating. Further, a sensitivity analysis was carried out to evaluate the effect of various building properties, for example, level of insulation and thermal capacity. Danish building codes from 1977 and forward were used as benchmarks for insulation levels. It was shown that both insulation and thermal mass influence the achievable flexibility savings, especially for floor heating. Buildings that comply with building codes later than 1979 could provide flexibility emission savings of around 10%, while buildings that comply with earlier codes provided savings in the range of 0–5% depending on the heating system and thermal mass.

2018 ◽  
Vol 44 ◽  
pp. 00003
Author(s):  
Stanisław Anweiler ◽  
Maciej Masiukiewicz

The paper presents research related to the operation of an ground-source heat pump with a thermal output of 16.85 kW and an electrical power of 3.72 kW in various conditions, both from the mechanical and thermodynamic perspective. The publication contains the results of research on a selected heat pump model with an R410a refrigerant carried out in an accredited laboratory in the Czech Republic. Detailed analysis of the data in terms of changes in the COP coefficient for two heating water temperatures was carried out (35°C and 55°C) and in the range of outdoor air temperature from -10°C to 15°C every 1°C. The analysis was also carried out to determine the efficiency of the heat pump depending on the parameters of the heat source. Devices of this type, enabling effective use of environmental available thermal energy with low operating costs, meet increasingly stringent environmental protection requirements. Significant costs of heating buildings are one of the main reasons for the need to look for alternative energy sources. The heat resources contained in water, air and land are huge. Due to the fact that heat pump prices dropped significantly, and their efficiency has increased over the last few years, these devices are a real competition for conventional ways of supplying buildings with heat. Heat pumps do not require daily maintenance, are fully automated and have intuitive control. These features allow to use them as components in the system of a modern and intelligent household. It was shown that the SCOP of the tested device increased by 1% on average reaching SCOP = 4.71 for a typical external calculation temperature and for a low-temperature heating system (35°C).


Energies ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1118 ◽  
Author(s):  
Thomas Kemmler ◽  
Bernd Thomas

Heat pumps in combination with a photovoltaic system are a very promising option for the transformation of the energy system. By using such a system for coupling the electricity and heat sectors, buildings can be heated sustainably and with low greenhouse gas emissions. This paper reveals a method for dimensioning a suitable system of heat pump and photovoltaics (PV) for residential buildings in order to achieve a high level of (photovoltaic) PV self-consumption. This is accomplished by utilizing a thermal energy storage (TES) for shifting the operation of the heat pump to times of high PV power production by an intelligent control algorithm, which yields a high portion of PV power directly utilized by the heat pump. In order to cover the existing set of building infrastructure, 4 reference buildings with different years of construction are introduced for both single- and multi-family residential buildings. By this means, older buildings with radiator heating as well as new buildings with floor heating systems are included. The simulations for evaluating the performance of a heat pump/PV system controlled by the novel algorithm for each type of building were carried out in MATLAB-Simulink® 2017a. The results show that 25.3% up to 41.0% of the buildings’ electricity consumption including the heat pump can be covered directly from the PV-installation per year. Evidently, the characteristics of the heating system significantly influence the results: new buildings with floor heating and low supply temperatures yield a higher level of PV self-consumption due to a higher efficiency of the heat pump compared to buildings with radiator heating and higher supply temperatures. In addition, the effect of adding a battery to the system was studied for two building types. It will be shown that the degree of PV self-consumption increases in case a battery is present. However, due to the high investment costs of batteries, they do not pay off within a reasonable period.


2012 ◽  
Vol 77 (673) ◽  
pp. 175-184
Author(s):  
Kozo TAKASE ◽  
Masayuki MAE ◽  
Yoshihiko AKAMINE ◽  
Ryohei KONO ◽  
Makoto SATOH ◽  
...  

2019 ◽  
Vol 10 (1) ◽  
pp. 35-41 ◽  
Author(s):  
Lucie Horka ◽  
Jiri Hirs

This case study is aimed at transient simulation of floor heating systems. There is comparison of surface floor temperatures and heat fluxes changes of different systems over time. The first studied system is a dry floor heating system which consists of system boards made from insulation material, spreader plates, and it is covered by cement fiber boards. The second examined system is heavy wet concrete floor heating system whose heating power is set identically as heating power of dry floor heating system. Mean temperature of heating water is investigated. All simulations, both time steady-state and transient, are performed in software CalA. Reduction of duration and computational performance of simulation is achieved by creation of a surrogate model. The surrogate model evinces identical surface temperatures and heat fluxes. Total number of computational grid is reduced and therefore lower number of equations is solved. Results show that dry floor heating system has faster response than concreate floor heating system. It is caused by lower weight and lower thermal capacity of this system.


Energies ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 279
Author(s):  
Georgios A. Mouzeviris ◽  
Konstantinos T. Papakostas

Air-to-water heat pumps (AWHPs) is a very good option for efficient heating in the residential and commercial building sectors. Their performance and therefore the use of primary energy and CO2 gas emissions are affected by various factors. The aim of this paper is to present a study on the seasonal coefficient of performance in heating (SCOP) of AWHPs, which are available in the Greek market. The sample consists of 100 models in total, offered by 12 manufacturers, in a range of heat pump’s thermal capacity up to 50 kW. The calculation of SCOP values was performed according to the methodology proposed by the EN14825 standard. The results indicate how the heating capacity, the local climate, the supply water temperature, the compressor’s technology, and the control system affect the seasonal performance of the various AWHP models examined. Setting the SCOP ≥ 3 value as a criterion, the analysis that was carried out in four climatic zones A, B, C, and D of Greece, shows that there are many models that meet this criterion, and, in fact, their number increases from the coldest to warmer climates, in combination with lower water supply temperatures to the heating system and a control system with weather compensation.


Author(s):  
Arnulfo Pérez-Pérez ◽  
Jorge Sergio Téllez-Martínez ◽  
Gregorio Hortelano-Capetillo ◽  
Jesús Israel Barraza-Fierro

In this work, the dimensions of a furnace for melting of ferrous alloys were determined. The furnace has an electromagnetic induction heating system. In addition, the parameters of electrical power supply such as frequency and power were calculated. A 5kg cast steel mass with a density of 7.81 kg / dm3 was proposed. This corresponds to a crucible volume of 0.641 dm3. The frequency was obtained from tables, which take into account the diameter of the crucible, and its value was 1 KHz. The energy consumption was determined with the heat required to bring the steel to the temperature of 1740 K, the energy losses through the walls, bottom and top of the crucible. This value was divided between the heating time (30 minutes) and resulted in a power of 4.5 KW. The development of the calculations shows that the induction heating is an efficient process and allows a fast melting of ferrous alloys.


Sign in / Sign up

Export Citation Format

Share Document