scholarly journals Numerical Simulation of Transport Phenomena in Proton Exchange Membrane Fuel Cell with Multichannel Serpentine Flow Fields

Author(s):  
Zhongying Shi ◽  
Xia Wang

The gas diffusion layer (GDL) in a proton exchange membrane (PEM) fuel cell has a porous structure with anisotropic and non-homogenous properties. The objective of this research is to develop a PEM fuel cell model where transport phenomena in the GDL are simulated based on GDL’s pore structure. The GDL pore structure was obtained by using a scanning electron microscope (SEM). GDL’s cross-section view instead of surface view was scanned under the SEM. The SEM image was then processed using an image processing tool to obtain a two dimensional computational domain. This pore structure model was then coupled with an electrochemical model to predict the overall fuel cell performance. The transport phenomena in the GDL were simulated by solving the Navier-Stokes equation directly in the GDL pore structure. By comparing with the testing data, the fuel cell model predicted a reasonable fuel cell polarization curve. The pore structure model was further used to calculate the GDL permeability. The numerically predicted permeability was close to the value published in the literature. A future application of the current pore structure model is to predict GDL thermal and electric related properties.


Author(s):  
Z. Shi ◽  
X. Wang

The gas diffusion layer (GDL) in a proton exchange membrane (PEM) fuel cell has a porous structure with anisotropic and non-homogenous properties. The objective of this research is to develop a PEM fuel cell model where transport phenomena in the GDL are simulated based on GDL’s pore structure. The GDL pore structure was obtained by using a scanning electron microscope (SEM). GDL’s cross-section view instead of surface view was scanned under the SEM. The SEM image was then processed using an image processing tool to obtain a two-dimensional computational domain. This pore structure model was then coupled with an electrochemical model to predict the overall fuel cell performance. The transport phenomena in the GDL were simulated by solving the Navier-Stokes equation directly in the GDL pore structure. By comparing with the testing data, the fuel cell model predicted a reasonable fuel cell polarization curve. The pore structure model was further used to calculate the GDL permeability. The numerically predicted permeability was close to the value published in the literature. A future application of the current pore structure model is to predict GDL thermal and electric related properties.


Energy ◽  
2020 ◽  
pp. 119313
Author(s):  
Aezid-Ul-Hassan Najmi ◽  
Ikechukwu S. Anyanwu ◽  
Xu Xie ◽  
Zhi Liu ◽  
Kui Jiao

2010 ◽  
Vol 195 (19) ◽  
pp. 6342-6348 ◽  
Author(s):  
Juanfang Liu ◽  
Nobuyuki Oshima ◽  
Eru Kurihara ◽  
Litan Kumar Saha

Author(s):  
N. Djilali ◽  
T. Berning

Fuel cells (FC’s) are electrochemical devices that convert directly into electricity the chemical energy of reaction of a fuel (usually hydrogen) with an oxidant (usually oxygen from ambient air). The only by-products in a hydrogen fuel cell are heat and water, making this emerging technology the leading candidate for quiet, zero emission energy production. Several types of fuel cell are currently undergoing intense research and development for applications ranging from portable electronics and appliances to residential power generation and transportation. The focus of this lecture is Proton-Exchange Membrane Fuel Cells (PEMFC’s). An electrolyte consisting of a “solid” polymer membrane, low operating temperatures (typically below 90 °C) and a relatively simple design combine to make PEMFC’s particularly well suited to automotive and portable applications. The operation of a fuel cell relies on electrochemical reactions and an array of coupled transport phenomena, including multi-component gas flow, two phase-flow, heat and mass transfer, phase change and transport of charged species. The transport processes take place in variety of media, including porous gas diffusion electrodes and polymer membranes. The fuel cell environment makes it impossible to measure in-situ the quantities of interest to understand and quantify these phenomena, and computational modelling and simulations are therefore poised to play a central role in the development and optimization of fuel cell technology. We provide an overview of the role of various transport phenomena in fuel cell operation and some of the physical and computational modelling challenges they present. The processes will be illustrated through examples of multi-dimensional numerical simulations of Proton-Exchange Membrane Fuel Cells. We close with a perspective on some of the many remaining challenges and future development opportunities.


Sign in / Sign up

Export Citation Format

Share Document