A Phenomenological Open Circuit Voltage Model for Lithium-Ion Cells

2015 ◽  
2015 ◽  
Vol 295 ◽  
pp. 99-107 ◽  
Author(s):  
Anup Barai ◽  
W. Dhammika Widanage ◽  
James Marco ◽  
Andrew McGordon ◽  
Paul Jennings

Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3358
Author(s):  
Christian Geisbauer ◽  
Katharina Wöhrl ◽  
Daniel Koch ◽  
Gudrun Wilhelm ◽  
Gerhard Schneider ◽  
...  

The degradation of lithium-ion cells is an important aspect, not only for quality management, but also for the customer of the application like, e.g., scooters or electric vehicles. During the lifetime of the system, the overall health on the battery plays a key role in its depreciation. Therefore, it is necessary to monitor the health of the battery during operation, i.e., cycle life, but also during stationary conditions, i.e., calendar aging. In this work, the degradation due to calendar aging is analyzed for six different cell chemistries in terms of capacity degradation and impedance increase and their performance are being compared. In a new proposed metric, the relative deviations between various cells with the exact identical aging history are being analyzed for their degradation effects and their differences, which stands out in comparison to similar research. The capacity loss was found to be most drastic at 60 °C and at higher storage voltages, even for titanate-oxide cells. LiNiMnCoO2 (NMC), LiNiCoAlO2 (NCA) and Li2TiO3 (LTO) cells at 60 °C showed the most drastic capacity decrease. NMC and NCA cells at 60 °C and highest storage voltage did not show any open circuit voltage, as their current interrupt mechanism triggered. The effect of aging shows no uniform impact on the changes in the capacity variance when comparing different aging conditions, with respect to the evaluated standard deviation for all cells. The focus of this work was on the calendar aging effect and may be supplemented in a second study for cyclic aging.


RSC Advances ◽  
2018 ◽  
Vol 8 (54) ◽  
pp. 30802-30812 ◽  
Author(s):  
Fuqiang An ◽  
Hongliang Zhao ◽  
Ping Li

More than two parameters are adopted to sort lithium ion cells (LICs) for better performance in the production process, such as capacity, open-circuit voltage (OCV), direct current resistance (DCR), et al.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1054
Author(s):  
Kuo Yang ◽  
Yugui Tang ◽  
Zhen Zhang

With the development of new energy vehicle technology, battery management systems used to monitor the state of the battery have been widely researched. The accuracy of the battery status assessment to a great extent depends on the accuracy of the battery model parameters. This paper proposes an improved method for parameter identification and state-of-charge (SOC) estimation for lithium-ion batteries. Using a two-order equivalent circuit model, the battery model is divided into two parts based on fast dynamics and slow dynamics. The recursive least squares method is used to identify parameters of the battery, and then the SOC and the open-circuit voltage of the model is estimated with the extended Kalman filter. The two-module voltages are calculated using estimated open circuit voltage and initial parameters, and model parameters are constantly updated during iteration. The proposed method can be used to estimate the parameters and the SOC in real time, which does not need to know the state of SOC and the value of open circuit voltage in advance. The method is tested using data from dynamic stress tests, the root means squared error of the accuracy of the prediction model is about 0.01 V, and the average SOC estimation error is 0.0139. Results indicate that the method has higher accuracy in offline parameter identification and online state estimation than traditional recursive least squares methods.


2020 ◽  
Author(s):  
Wu-Yang Sean ◽  
Ana Pacheco

Abstract For reusing automotive lithium-ion battery, an in-house battery management system is developed. To overcome the issues of life cycle and capacity of reused battery, an online function of estimating battery’s internal resistance and open-circuit voltage based on adaptive control theory are applied for monitoring life cycle and remained capacity of battery pack simultaneously. Furthermore, ultracapacitor is integrated in management system for sharing peak current to prolong life span of reused battery pack. The discharging ratio of ultracapacitor is adjusted manually under Pulse-Width-Modulation signal in battery management system. In case study in 52V LiMnNiCoO2 platform, results of estimated open-circuit voltage and internal resistances converge into stable values within 600(s). These two parameters provide precise estimation for electrical capacity and life cycle. It also shows constrained voltage drop both in the cases of 25% to 75% of ultracapacitors discharging ratio compared with single battery. Consequently, the Life-cycle detection and extending functions integrated in battery management system as a total solution for reused battery are established and verified.


Sign in / Sign up

Export Citation Format

Share Document