(Invited) Construction of Hemoprotein Assembly Via Heme-Heme Pocket Interaction and Its Photochemical Property

2020 ◽  
Vol 27 ◽  
Author(s):  
Sheetal Uppal ◽  
Mohd. Asim Khan ◽  
Suman Kundu

Aims: The aim of our study is to understand the biophysical traits that govern the stability and folding of Synechocystis hemoglobin, a unique cyanobacterial globin that displays unusual traits not observed in any of the other globins discovered so far. Background: For the past few decades, classical hemoglobins such as vertebrate hemoglobin and myoglobin have been extensively studied to unravel the stability and folding mechanisms of hemoglobins. However, the expanding wealth of hemoglobins identified in all life forms with novel properties, like heme coordination chemistry and globin fold, have added complexity and challenges to the understanding of hemoglobin stability, which has not been adequately addressed. Here, we explored the unique truncated and hexacoordinate hemoglobin from the freshwater cyanobacterium Synechocystis sp. PCC 6803 known as “Synechocystis hemoglobin (SynHb)”. The “three histidines” linkages to heme are novel to this cyanobacterial hemoglobin. Objective: Mutational studies were employed to decipher the residues within the heme pocket that dictate the stability and folding of SynHb. Methods: Site-directed mutants of SynHb were generated and analyzed using a repertoire of spectroscopic and calorimetric tools. Result: The results revealed that the heme was stably associated to the protein under all denaturing conditions with His117 playing the anchoring role. The studies also highlighted the possibility of existence of a “molten globule” like intermediate at acidic pH in this exceptionally thermostable globin. His117 and other key residues in the heme pocket play an indispensable role in imparting significant polypeptide stability. Conclusion: Synechocystis hemoglobin presents an important model system for investigations of protein folding and stability in general. The heme pocket residues influenced the folding and stability of SynHb in a very subtle and specific manner and may have been optimized to make this Hb the most stable known as of date. Other: The knowledge gained hereby about the influence of heme pocket amino acid side chains on stability and expression is currently being utilized to improve the stability of recombinant human Hbs for efficient use as oxygen delivery vehicles.


1964 ◽  
Vol 42 (6) ◽  
pp. 755-762 ◽  
Author(s):  
David B. Smith

An outline of present ideas concerning the arrangement, folding, and chemistry of the polypeptide chains of hemoglobin is given with some references to present know ledge of myoglobin.New material includes a partial amino acid sequence of the β-chain of horse hemoglobin, details concerning the amino acids lining the heme pocket of horse hemoglobin, and the effects of carboxypeptidases A and B on horse oxy- and horse deoxy-hemoglobin. The kinetics of the latter reactions are not simple. The C-terminal amino acids are released more rapidly from the oxygenated form.


2013 ◽  
Vol 1834 (9) ◽  
pp. 1757-1763 ◽  
Author(s):  
Wendy Van Leuven ◽  
Bert Cuypers ◽  
Filip Desmet ◽  
Daniela Giordano ◽  
Cinzia Verde ◽  
...  

2014 ◽  
Vol 118 (24) ◽  
pp. 6511-6518 ◽  
Author(s):  
J. S. Goodman ◽  
S.-H. Chao ◽  
T. V. Pogorelov ◽  
M. Gruebele
Keyword(s):  

2003 ◽  
Vol 43 (supplement) ◽  
pp. S85
Author(s):  
T. Uno ◽  
T. Ryu ◽  
H. Tsutsumi ◽  
K. Kiyota ◽  
Y. Tomisugi ◽  
...  
Keyword(s):  

2003 ◽  
Vol 279 (11) ◽  
pp. 10433-10441 ◽  
Author(s):  
Tapan K. Das ◽  
Uri Samuni ◽  
Yu Lin ◽  
Daniel E. Goldberg ◽  
Denis L. Rousseau ◽  
...  
Keyword(s):  

1987 ◽  
Vol 166 (2) ◽  
pp. 399-408 ◽  
Author(s):  
Robert M. COOKE ◽  
Claudio DALVIT ◽  
Surinder S. NARULA ◽  
Peter E. WRIGHT

2021 ◽  
Author(s):  
Li Zhang ◽  
Hongcen Zheng ◽  
Yonghai Gan ◽  
Bingdang Wu ◽  
Zhihao Chen ◽  
...  

Abstract Controllable synthesis, proper dispersion, and feasible functionalization are crucial requirements for the application of nanomaterials in many scenarios. Here, we report an all-in-one approach for the synthesis and functionalization of gold nanoparticles (AuNPs) with the simplest β-diketone, acetylacetone (AcAc). With this approach, the particle size of the resultant AuNPs was tunable by simply adjusting the light intensity or AcAc dosage. Moreover, owing to the capping role of AcAc, the resultant AuNPs could be stably dispersed in water for a year without obvious change in morphology and photochemical property. Formation of ligand to metal charge transfer complexes was found to play an important role in the redox conversion of Au with AcAc. Meanwhile, the moderate complexation ability enables the surface AcAc on the AuNPs to undergo ligand exchange reactions. With the aid of Ag+, the AuNPs underwent ligand exchange reaction with glutathione and exhibited enhanced photoluminescence (PL) with a maximum of 22-fold increase in PL intensity. The PL response was linear to the concentration of glutathione in the range of 0~500 μM. Such a ligand exchange reaction makes the obtained AuNPs being good imaging probes. To the best of our knowledge, this is the first work on illustrating the roles of AcAc as a multifunctional ligand in fabrication of NPs, which sheds new light on the surface modulation in synthesis of nanomaterials.


Sign in / Sign up

Export Citation Format

Share Document