Extracellular Electron Transfer in Mixed Species Biofilms: The Role of Rikenella Microfusus

2021 ◽  
Author(s):  
wentao yu ◽  
baoliang chen

<p>Pyrogenic carbon plays important roles in microbial reduction of ferrihydrite by shuttling electrons in the extracellular electron transfer (EET) processes. Despite its importance, a full assessment on the impact of graphitic structures in pyrogenic carbon on microbial reduction of ferrihydrite has not been conducted. This study is a systematic evaluation of microbial ferrihydrite reduction by Shewanella oneidensis MR-1 in the presence of pyrogenic carbon with various graphitization extents. The results showed that the rates and extents of microbial ferrihydrite reduction were significantly enhanced in the presence of pyrogenic carbon, and increased with increasing pyrolysis temperature. Combined spectroscopic and electrochemical analyses suggested that the rate of microbial ferrihydrite reduction were dependent on the electrical conductivity of pyrogenic carbon (i.e., graphitization extent), rather than the electron exchange capacity. The key role of graphitic structures in pyrogenic carbon in mediating EET was further evidenced by larger microbial electrolysis current with pyrogenic carbon prepared at higher pyrolysis temperatures. This study provides new insights into the electron transfer in the pyrogenic carbon-mediated microbial reduction of ferrihydrite.</p>


2020 ◽  
Author(s):  
Kuppusamy Sathishkumar ◽  
Yi Li ◽  
Rana Muhammad Adnan Ikram

<p>Biochar is extensively used in environmental pollutant remediation because of its diverse property, however the effect of biochar on microbial nitrate reduction and electrochemical behavior of biochar remain unknown. Also electron transfer from the microbial cells to electron donor or acceptor have been transport across the extracellular polymeric substances (EPS), however it was unclear whether extracellular polymeric substances captured or enhance the electrons.  Hence, aim of the present study is to investigate the electrochemical behavior of biochar and its effects on microbial nitrate reduction and elucidate the role of extracellular polymeric substances in extracellular electron transfer (EET).  The biochar was prepared at different pyrolysis temperatures (400 °C, 500 °C and 600 °C) and their electrochemical behavior was characterized by electrochemical analysis (cyclic voltammetry, electrochemical impedance spectrum, chronoamperometry). Results demonstrated that all the biochars could donate and accept the electrons, impact of biochar on microbial nitrate reduction was studied and the results showed that biochar prepared at 400 °C significantly enhances microbial nitrate reduction process. Phenol O-H and quinone C=O surface functional groups on the biochar contributes in the overall electron exchange which accelerated the nitrate reduction. The role of EPS in EET by electrochemical analysis results reveals that outer membrane c-type cytochrome and flavin protein from the biofilm was involved in electron transfer process, and EPS act as transient media for microbial EET. Overall, present study suggested that biochar could be used as eco-friendly material for the enhancement of microbial denitrification.</p>


2017 ◽  
Vol 1 (7) ◽  
pp. 1568-1572 ◽  
Author(s):  
M. Grattieri ◽  
K. Hasan ◽  
R. D. Milton ◽  
S. Abdellaoui ◽  
M. Suvira ◽  
...  

First report of the bioelectrocatalytic properties ofR. microfususcolonizing carbon cloth electrodes for glucose oxidation.


2020 ◽  
Author(s):  
Zhe Zeng ◽  
Sjef Boeren ◽  
Varaang Bhandula ◽  
Samuel H. Light ◽  
Eddy J. Smid ◽  
...  

AbstractEthanolamine (EA) is a valuable microbial carbon and nitrogen source derived from phospholipids present in cell membranes. EA catabolism is suggested to occur in so-called bacterial microcompartments (BMCs) and activation of EA utilization (eut) genes is linked to bacterial pathogenesis. Despite reports showing that activation of eut in Listeria monocytogenes is regulated by a vitamin B12-binding riboswitch and that upregulation of eut genes occurs in mice, it remains unknown whether EA catabolism is BMC dependent. Here, we provide evidence for BMC-dependent anaerobic EA utilization via metabolic analysis, proteomics and electron microscopy. First, we show B12-induced activation of the eut operon in L. monocytogenes coupled to uptake and utilization of EA thereby enabling growth. Next, we demonstrate BMC formation in conjunction to EA catabolism with the production of acetate and ethanol in a molar ratio of 2:1. Flux via the ATP generating acetate branch causes an apparent redox imbalance due to reduced regeneration of NAD+ in the ethanol branch resulting in a surplus of NADH. We hypothesize that the redox imbalance is compensated by linking eut BMC to anaerobic flavin-based extracellular electron transfer (EET). Using L. monocytogenes wild type, a BMC mutant and a EET mutant, we demonstrate an interaction between BMC and EET and provide evidence for a role of Fe3+ as an electron acceptor. Taken together, our results suggest an important role of anaerobic BMC-dependent EA catabolism in the physiology of L. monocytogenes, with a crucial role for the flavin-based EET system in redox balancing.IMPORTANCEListeria monocytogenes is a food-borne pathogen causing severe illness and, as such, it is crucial to understand the molecular mechanisms contributing to pathogenicity. One carbon source that allows L. monocytogenes to grow in humans is ethanolamine (EA), which is derived from phospholipids present in eukaryotic cell membranes. It is hypothesized that EA utilization occurs in bacterial microcompartments (BMCs), self-assembling subcellular proteinaceous structures and analogs of eukaryotic organelles. Here, we demonstrate that BMC-driven utilization of EA in L. monocytogenes results in increased energy production essential for anaerobic growth. However, exploiting BMCs and the encapsulated metabolic pathways also requires balancing of oxidative and reductive pathways. We now provide evidence that L. monocytogenes copes with this by linking BMC activity to flavin-based extracellular electron transfer (EET) using iron as an electron acceptor. Our results shed new light on an important molecular mechanism that enables L. monocytogenes to grow using host-derived phospholipid degradation products.


2018 ◽  
Vol 115 (5) ◽  
pp. 1361-1366 ◽  
Author(s):  
Narendran Sekar ◽  
Jian Wang ◽  
Yan Zhou ◽  
Yi Fang ◽  
Yajun Yan ◽  
...  

2010 ◽  
Vol 22 (7-8) ◽  
pp. 856-864 ◽  
Author(s):  
Rachida A. Bouhenni ◽  
Gary J. Vora ◽  
Justin C. Biffinger ◽  
Sheetal Shirodkar ◽  
Ken Brockman ◽  
...  

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Cody S. Madsen ◽  
Michaela A. TerAvest

Abstract Shewanella oneidensis MR-1 is quickly becoming a synthetic biology workhorse for bioelectrochemical technologies due to a high level of understanding of its interaction with electrodes. Transmembrane electron transfer via the Mtr pathway has been well characterized, however, the role of NADH dehydrogenases in feeding electrons to Mtr has been only minimally studied in S. oneidensis MR-1. Four NADH dehydrogenases are encoded in the genome, suggesting significant metabolic flexibility in oxidizing NADH under a variety of conditions. A strain lacking the two dehydrogenases essential for aerobic growth exhibited a severe growth defect with an anode (+0.4 VSHE) or Fe(III)-NTA as the terminal electron acceptor. Our study reveals that the same NADH dehydrogenase complexes are utilized under oxic conditions or with a high potential anode. Our study also supports the previously indicated importance of pyruvate dehydrogenase activity in producing NADH during anerobic lactate metabolism. Understanding the role of NADH in extracellular electron transfer may help improve biosensors and give insight into other applications for bioelectrochemical systems.


2019 ◽  
Author(s):  
Cody S. Madsen ◽  
Michaela A. TerAvest

AbstractShewanella oneidensisMR-1 is quickly becoming a synthetic biology workhorse for bioelectrochemical technologies due to a high level of understanding of its interaction with electrodes. Transmembrane electron transfer via the Mtr pathway has been well characterized, however, the role of NADH dehydrogenases in feeding electrons to Mtr has been only minimally studied inS. oneidensisMR-1. Four NADH dehydrogenases are encoded in the genome, suggesting significant metabolic flexibility in oxidizing NADH under a variety of conditions. Strains containing in-frame deletions of each of these dehydrogenases were grown in anodic bioelectrochemical systems with N-acetylglucosamine or D,L-lactate as the carbon source to determine impact on extracellular electron transfer. A strain lacking the two dehydrogenases essential for aerobic growth exhibited a severe growth defect with an anode (+0.4 VSHE) or Fe(III)-NTA as the terminal electron acceptor. Our study reveals that the same NADH dehydrogenase complexes are utilized under oxic conditions or with a high potential anode. Understanding the role of NADH in extracellular electron transfer may help improve biosensors and give insight into other applications for bioelectrochemical systems.TOC Graphic


Sign in / Sign up

Export Citation Format

Share Document