On the Role of Endogenous Electron Shuttles in Extracellular Electron Transfer

2012 ◽  
pp. 83-105 ◽  
Author(s):  
Evan D. Brutinel ◽  
Jeffrey A. Gralnick
2002 ◽  
Vol 184 (6) ◽  
pp. 1806-1810 ◽  
Author(s):  
J. Bruce H. Shyu ◽  
Douglas P. Lies ◽  
Dianne K. Newman

ABSTRACT Extracellular electron transfer can play an important role in microbial respiration on insoluble minerals. The humic acid analog anthraquinone-2,6-disulfonate (AQDS) is commonly used as an electron shuttle during studies of extracellular electron transfer. Here we provide genetic evidence that AQDS enters Shewanella oneidensis strain MR-1 and causes cell death if it accumulates past a critical concentration. A tolC homolog protects the cell from toxicity by mediating the efflux of AQDS. Electron transfer to AQDS appears to be independent of the tolC pathway, however, and requires the outer membrane protein encoded by mtrB. We suggest that there may be structural and functional relationships between quinone-containing electron shuttles and antibiotics.


2021 ◽  
Author(s):  
wentao yu ◽  
baoliang chen

<p>Pyrogenic carbon plays important roles in microbial reduction of ferrihydrite by shuttling electrons in the extracellular electron transfer (EET) processes. Despite its importance, a full assessment on the impact of graphitic structures in pyrogenic carbon on microbial reduction of ferrihydrite has not been conducted. This study is a systematic evaluation of microbial ferrihydrite reduction by Shewanella oneidensis MR-1 in the presence of pyrogenic carbon with various graphitization extents. The results showed that the rates and extents of microbial ferrihydrite reduction were significantly enhanced in the presence of pyrogenic carbon, and increased with increasing pyrolysis temperature. Combined spectroscopic and electrochemical analyses suggested that the rate of microbial ferrihydrite reduction were dependent on the electrical conductivity of pyrogenic carbon (i.e., graphitization extent), rather than the electron exchange capacity. The key role of graphitic structures in pyrogenic carbon in mediating EET was further evidenced by larger microbial electrolysis current with pyrogenic carbon prepared at higher pyrolysis temperatures. This study provides new insights into the electron transfer in the pyrogenic carbon-mediated microbial reduction of ferrihydrite.</p>


2020 ◽  
Author(s):  
Kuppusamy Sathishkumar ◽  
Yi Li ◽  
Rana Muhammad Adnan Ikram

<p>Biochar is extensively used in environmental pollutant remediation because of its diverse property, however the effect of biochar on microbial nitrate reduction and electrochemical behavior of biochar remain unknown. Also electron transfer from the microbial cells to electron donor or acceptor have been transport across the extracellular polymeric substances (EPS), however it was unclear whether extracellular polymeric substances captured or enhance the electrons.  Hence, aim of the present study is to investigate the electrochemical behavior of biochar and its effects on microbial nitrate reduction and elucidate the role of extracellular polymeric substances in extracellular electron transfer (EET).  The biochar was prepared at different pyrolysis temperatures (400 °C, 500 °C and 600 °C) and their electrochemical behavior was characterized by electrochemical analysis (cyclic voltammetry, electrochemical impedance spectrum, chronoamperometry). Results demonstrated that all the biochars could donate and accept the electrons, impact of biochar on microbial nitrate reduction was studied and the results showed that biochar prepared at 400 °C significantly enhances microbial nitrate reduction process. Phenol O-H and quinone C=O surface functional groups on the biochar contributes in the overall electron exchange which accelerated the nitrate reduction. The role of EPS in EET by electrochemical analysis results reveals that outer membrane c-type cytochrome and flavin protein from the biofilm was involved in electron transfer process, and EPS act as transient media for microbial EET. Overall, present study suggested that biochar could be used as eco-friendly material for the enhancement of microbial denitrification.</p>


2012 ◽  
Vol 78 (19) ◽  
pp. 6987-6995 ◽  
Author(s):  
Misha G. Mehta-Kolte ◽  
Daniel R. Bond

ABSTRACTThe current understanding of dissimilatory metal reduction is based primarily on isolates from the proteobacterial generaGeobacterandShewanella. However, environments undergoing active Fe(III) reduction often harbor less-well-studied phyla that are equally abundant. In this work, electrochemical techniques were used to analyze respiratory electron transfer by the only known Fe(III)-reducing representative of theAcidobacteria,Geothrix fermentans. In contrast to previously characterized metal-reducing bacteria, which typically reach maximal rates of respiration at electron acceptor potentials of 0 V versus standard hydrogen electrode (SHE),G. fermentansrequired potentials as high as 0.55 V to respire at its maximum rate. In addition,G. fermentanssecreted two different soluble redox-active electron shuttles with separate redox potentials (−0.2 V and 0.3 V). The compound with the lower midpoint potential, responsible for 20 to 30% of electron transfer activity, was riboflavin. The behavior of the higher-potential compound was consistent with hydrophilic UV-fluorescent molecules previously found inG. fermentanssupernatants. Both electron shuttles were also produced when cultures were grown with Fe(III), but not when fumarate was the electron acceptor. This study reveals thatGeothrixis able to take advantage of higher-redox-potential environments, demonstrates that secretion of flavin-based shuttles is not confined toShewanella, and points to the existence of high-potential-redox-active compounds involved in extracellular electron transfer. Based on differences between the respiratory strategies ofGeothrixandGeobacter, these two groups of bacteria could exist in distinctive environmental niches defined by redox potential.


mBio ◽  
2013 ◽  
Vol 4 (1) ◽  
Author(s):  
Nicholas J. Kotloski ◽  
Jeffrey A. Gralnick

ABSTRACT Shewanella oneidensis strain MR-1 is widely studied for its ability to respire a diverse array of soluble and insoluble electron acceptors. The ability to breathe insoluble substrates is defined as extracellular electron transfer and can occur via direct contact or by electron shuttling in S. oneidensis. To determine the contribution of flavin electron shuttles in extracellular electron transfer, a transposon mutagenesis screen was performed with S. oneidensis to identify mutants unable to secrete flavins. A multidrug and toxin efflux transporter encoded by SO_0702 was identified and renamed bfe (bacterial flavin adenine dinucleotide [FAD] exporter) based on phenotypic characterization. Deletion of bfe resulted in a severe decrease in extracellular flavins, while overexpression of bfe increased the concentration of extracellular flavins. Strains lacking bfe had no defect in reduction of soluble Fe(III), but these strains were deficient in the rate of insoluble Fe(III) oxide reduction, which was alleviated by the addition of exogenous flavins. To test a different insoluble electron acceptor, graphite electrode bioreactors were set up to measure current produced by wild-type S. oneidensis and the Δbfe mutant. With the same concentration of supplemented flavins, the two strains produced similar amounts of current. However, when exogenous flavins were not supplemented to bioreactors, bfe mutant strains produced significantly less current than the wild type. We have demonstrated that flavin electron shuttling accounts for ~75% of extracellular electron transfer to insoluble substrates by S. oneidensis and have identified the first FAD transporter in bacteria. IMPORTANCE Extracellular electron transfer by microbes is critical for the geochemical cycling of metals, bioremediation, and biocatalysis using electrodes. A controversy in the field was addressed by demonstrating that flavin electron shuttling, not direct electron transfer or nanowires, is the primary mechanism of extracellular electron transfer employed by the bacterium Shewanella oneidensis. We have identified a flavin adenine dinucleotide transporter conserved in all sequenced Shewanella species that facilitates export of flavin electron shuttles in S. oneidensis. Analysis of a strain that is unable to secrete flavins demonstrated that electron shuttling accounts for ~75% of the insoluble extracellular electron transfer capacity in S. oneidensis.


2020 ◽  
Author(s):  
Zhe Zeng ◽  
Sjef Boeren ◽  
Varaang Bhandula ◽  
Samuel H. Light ◽  
Eddy J. Smid ◽  
...  

AbstractEthanolamine (EA) is a valuable microbial carbon and nitrogen source derived from phospholipids present in cell membranes. EA catabolism is suggested to occur in so-called bacterial microcompartments (BMCs) and activation of EA utilization (eut) genes is linked to bacterial pathogenesis. Despite reports showing that activation of eut in Listeria monocytogenes is regulated by a vitamin B12-binding riboswitch and that upregulation of eut genes occurs in mice, it remains unknown whether EA catabolism is BMC dependent. Here, we provide evidence for BMC-dependent anaerobic EA utilization via metabolic analysis, proteomics and electron microscopy. First, we show B12-induced activation of the eut operon in L. monocytogenes coupled to uptake and utilization of EA thereby enabling growth. Next, we demonstrate BMC formation in conjunction to EA catabolism with the production of acetate and ethanol in a molar ratio of 2:1. Flux via the ATP generating acetate branch causes an apparent redox imbalance due to reduced regeneration of NAD+ in the ethanol branch resulting in a surplus of NADH. We hypothesize that the redox imbalance is compensated by linking eut BMC to anaerobic flavin-based extracellular electron transfer (EET). Using L. monocytogenes wild type, a BMC mutant and a EET mutant, we demonstrate an interaction between BMC and EET and provide evidence for a role of Fe3+ as an electron acceptor. Taken together, our results suggest an important role of anaerobic BMC-dependent EA catabolism in the physiology of L. monocytogenes, with a crucial role for the flavin-based EET system in redox balancing.IMPORTANCEListeria monocytogenes is a food-borne pathogen causing severe illness and, as such, it is crucial to understand the molecular mechanisms contributing to pathogenicity. One carbon source that allows L. monocytogenes to grow in humans is ethanolamine (EA), which is derived from phospholipids present in eukaryotic cell membranes. It is hypothesized that EA utilization occurs in bacterial microcompartments (BMCs), self-assembling subcellular proteinaceous structures and analogs of eukaryotic organelles. Here, we demonstrate that BMC-driven utilization of EA in L. monocytogenes results in increased energy production essential for anaerobic growth. However, exploiting BMCs and the encapsulated metabolic pathways also requires balancing of oxidative and reductive pathways. We now provide evidence that L. monocytogenes copes with this by linking BMC activity to flavin-based extracellular electron transfer (EET) using iron as an electron acceptor. Our results shed new light on an important molecular mechanism that enables L. monocytogenes to grow using host-derived phospholipid degradation products.


2018 ◽  
Vol 115 (5) ◽  
pp. 1361-1366 ◽  
Author(s):  
Narendran Sekar ◽  
Jian Wang ◽  
Yan Zhou ◽  
Yi Fang ◽  
Yajun Yan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document