scholarly journals Fatigue and Static Crack Growth Rate Study of Carbon Steel for Corrosion Prevention of Natural Gas Transmission Pipelines

2021 ◽  
Vol 11 (1) ◽  
pp. 329-338 ◽  
Author(s):  
E. Surojo ◽  
J. Anindito ◽  
F. Paundra ◽  
A. R. Prabowo ◽  
E. P. Budiana ◽  
...  

Abstract Underwater wet welding (UWW) is widely used in repair of offshore constructions and underwater pipelines by the shielded metal arc welding (SMAW) method. They are subjected the dynamic load due to sea water flow. In this condition, they can experience the fatigue failure. This study was aimed to determine the effect of water flow speed (0 m/s, 1 m/s, and 2 m/s) and water depth (2.5 m and 5 m) on the crack growth rate of underwater wet welded low carbon steel SS400. Underwater wet welding processes were conducted using E6013 electrode (RB26) with a diameter of 4 mm, type of negative electrode polarity and constant electric current and welding speed of 90 A and 1.5 mm/s respectively. In air welding process was also conducted for comparison. Compared to in air welded joint, underwater wet welded joints have more weld defects including porosity, incomplete penetration and irregular surface. Fatigue crack growth rate of underwater wet welded joints will decrease as water depth increases and water flow rate decreases. It is represented by Paris's constant, where specimens in air welding, 2.5 m and 5 m water depth have average Paris's constant of 8.16, 7.54 and 5.56 respectively. The increasing water depth will cause the formation of Acicular Ferrite structure which has high fatigue crack resistance. The higher the water flow rate, the higher the welding defects, thereby reducing the fatigue crack resistance.


CORROSION ◽  
10.5006/3572 ◽  
2021 ◽  
Author(s):  
Ramgopal Thodla ◽  
Anand Venkatesh

Fatigue crack growth rate was developed on three heats of alloy 718 (UNS N07718) under cathodic polarization, over a wide range of loading conditions. Fatigue crack growth rate increased with decreasing frequency over a range of Kmax and K conditions. In most cases, there was no evidence of a plateau in fatigue crack growth rate at low frequencies. The fatigue crack growth rate over the range of conditions evaluated were influenced by static crack growth rate at Kmax. The principle of superposition of fatigue crack growth and static crack growth was used to rationalize the observed crack growth rate response. Static crack growth rate of alloy 718 measured under constant K conditions, was lower than that measured under rising displacement conditions. A crack tip strain rate based model was used to rationalize the fatigue crack growth rate behavior and the static crack growth rate behavior under constant K. However, the formulation of the model for the rising K was not able to rationalize the crack growth rate under rising displacement conditions.


CORROSION ◽  
10.5006/2896 ◽  
2020 ◽  
Vol 76 (3) ◽  
pp. 312-323
Author(s):  
Ramgopal Thodla ◽  
Feng Gui ◽  
Colum Holtam

Fatigue crack growth rate of line pipe steels in sour environments typically exhibits a steady-state value at low frequencies. However, in highly inhibited sour environments, there is no evidence of a steady-state fatigue crack growth at low frequencies. This is likely a result of static crack growth rate at Kmax. Stable static crack growth measured under constant stress intensity factor (K) conditions in inhibited sour environments was in the range of 10−7 mm/s to 10−8 mm/s. The crack growth rate in inhibited sour environments is likely associated with crack tip processes associated with metal dissolution/film formation and associated hydrogen evolution. The results obtained were modeled based on a crack tip strain rate based approach, where the rate limiting step was the metal dissolution/FeS formation and the corresponding hydrogen generation reaction.


Sign in / Sign up

Export Citation Format

Share Document