Asymmetric Membranes for High Capacity Lithium Ion Batteries: A Low Cost, Efficient, and Scalable Method

Author(s):  
Shaohua Lu ◽  
Weidong Hu ◽  
Xiaojun Hu

Due to their low cost and improved safety compared to lithium-ion batteries, sodium-ion batteries have attracted worldwide attention in recent decades.


2021 ◽  
Vol 10 (1) ◽  
pp. 210-220
Author(s):  
Fangfang Wang ◽  
Ruoyu Hong ◽  
Xuesong Lu ◽  
Huiyong Liu ◽  
Yuan Zhu ◽  
...  

Abstract The high-nickel cathode material of LiNi0.8Co0.15Al0.05O2 (LNCA) has a prospective application for lithium-ion batteries due to the high capacity and low cost. However, the side reaction between the electrolyte and the electrode seriously affects the cycling stability of lithium-ion batteries. In this work, Ni2+ preoxidation and the optimization of calcination temperature were carried out to reduce the cation mixing of LNCA, and solid-phase Al-doping improved the uniformity of element distribution and the orderliness of the layered structure. In addition, the surface of LNCA was homogeneously modified with ZnO coating by a facile wet-chemical route. Compared to the pristine LNCA, the optimized ZnO-coated LNCA showed excellent electrochemical performance with the first discharge-specific capacity of 187.5 mA h g−1, and the capacity retention of 91.3% at 0.2C after 100 cycles. The experiment demonstrated that the improved electrochemical performance of ZnO-coated LNCA is assigned to the surface coating of ZnO which protects LNCA from being corroded by the electrolyte during cycling.


Carbon ◽  
2013 ◽  
Vol 64 ◽  
pp. 158-169 ◽  
Author(s):  
Shuangqiang Chen ◽  
Peite Bao ◽  
Linda Xiao ◽  
Guoxiu Wang

ACS Omega ◽  
2020 ◽  
Vol 5 (27) ◽  
pp. 16440-16447
Author(s):  
Minghang Xu ◽  
Jiaojiao Ma ◽  
Guiling Niu ◽  
Hongxun Yang ◽  
Mengfei Sun ◽  
...  

2020 ◽  
Vol 8 (1) ◽  
pp. 443-452 ◽  
Author(s):  
Miao Zhang ◽  
Liuzhang Ouyang ◽  
Min Zhu ◽  
Fang Fang ◽  
Jiangwen Liu ◽  
...  

Sodium ion batteries are a potential alternative to lithium ion batteries due to the low cost and natural abundance of sodium.


2019 ◽  
Vol 7 (1) ◽  
Author(s):  
Fenfen Wang ◽  
Xianfeng Gao ◽  
Lulu Ma ◽  
Chris Yuan

As one of the most promising anode materials for high-capacity lithium ion batteries (LIBs), silicon nanowires (SiNWs) have been studied extensively. The metal-assisted chemical etching (MACE) is a low-cost and scalable method for SiNW synthesis. Nanoparticle emissions from the MACE process, however, are of grave concerns due to their hazardous effects on both occupational and public health. In this study, both airborne and aqueous nanoparticle emissions from the MACE process for SiNWs with three sizes of 90 nm, 120 nm, and 140 nm are experimentally investigated. The prepared SiNWs are used as anodes of LIB coin cells, and the experimental results reveal that the initial discharge and charge capacities of LIB electrodes are 3636 and 2721 mAh g−1 with 90 nm SiNWs, 3779 and 2712 mAh g−1 with 120 nm SiNWs, and 3611 and 2539 mAh g−1 with 140 nm SiNWs. It is found that for 1 kW h of LIB electrodes, the MACE process for 140 nm SiNWs produces a high concentration of airborne nanoparticle emissions of 2.48 × 109 particles/cm3; the process for 120 nm SiNWs produces a high mass concentration of aqueous particle emissions, with a value of 9.95 × 105 mg/L. The findings in this study can provide experimental data of nanoparticle emissions from the MACE process for SiNWs for LIB applications and can help the environmental impact assessment and life cycle assessment of the technology in the future.


2021 ◽  
Author(s):  
Ya-Nan Zhang ◽  
Li-Ying Xue ◽  
Yong Zhang ◽  
Jing Su ◽  
Yun-Fei Long Long ◽  
...  

Abstract MnC2O4 is a promising anode material for high-energy lithium-ion batteries due to its low cost and high capacity. However, its application is limited by the poor cyclic-stability and rate performance caused by its low conductivity. Herein, mesoporous MnC2O4 nanorod/rGO composite is prepared via precipitation followed by a reflux reduction process, where MnC2O4 nanorods are attached to the surface of graphene through electrostatic adsorption. This composite delivers a discharge capacity of 1082, 964, and 808 mAh·g-1 after 200 cycles at 3, 5, and 8 C, respectively. The good electrochemical performance can be attributed to the synergistic effect between mesoporous nanorods and rGO. This synergistic effect not only offers high conductivity, nanoparticles, and abundant mesopores to accelerate electrode kinetics but also provides a more stable structure to reduce the volume effect during the charge/discharge process. Therefore, mesoporous MnC2O4 nanorod/rGO composite can find a potential application in high-energy lithium-ion batteries.


Author(s):  
Han Yeu Ling ◽  
Hao Chen ◽  
Shanqing Zhang ◽  
Zhenzhen Wu ◽  
Luke Hencz ◽  
...  

Sustainable, non-toxic, and low-cost bio-derived materials (BDMs) have interesting structures, complex compositions, and unique functional groups and have been used as electrode materials, separators, interlayers, and binders in lithium ion...


2019 ◽  
Vol 14 (1) ◽  
Author(s):  
Zhongxiang Guan ◽  
Zhiping Guan ◽  
Zhigang Li ◽  
Junhui Liu ◽  
Kaifeng Yu

Abstract As a biomass waste, hemp stems have the advantages of low cost and abundance, and it is regarded as a promising anode material with a high specific capacity. In this paper, activated carbon derived from hemp stems is prepared by low-temperature carbonization and high-temperature activation. The results of characterizations show the activated carbon has more pores due to the advantages of natural porous structure of hemp stem. The aperture size is mainly microporous, and there are mesopores and macropores in the porous carbon. The porous carbon has an excellent reversible capacity of 495 mAh/g after 100 cycles at 0.2 °C as the anode of lithium-ion battery. Compared with the graphite electrode, the electrochemical property of activated carbon is significantly improved due to the reasonable distribution of pore size. The preparation of the activated carbon provides a new idea for low cost and rapid preparation of anode materials for high capacity lithium-ion batteries.


Sign in / Sign up

Export Citation Format

Share Document