Corrosion Enhancement of the AISI 304 Stainless Steel Using a High Power Diode Laser and Large Pulsed Electron Beam

2020 ◽  
Vol MA2020-02 (8) ◽  
pp. 1149-1149
Author(s):  
Hyung Wook Park
2014 ◽  
Vol 253 ◽  
pp. 214-220 ◽  
Author(s):  
A. Riveiro ◽  
A. Mejías ◽  
F. Lusquiños ◽  
J. del Val ◽  
R. Comesaña ◽  
...  

Author(s):  
Nathalia M. R. Jesus ◽  
Millena G. R. S. Contente ◽  
Rudimar Riva ◽  
Aline Capella ◽  
Romario Pinheiro ◽  
...  

Author(s):  
A. Kurc-Lisiecka ◽  
A. Lisiecki

Purpose: of this paper was to analyze the influence of the basic parameters of laser welding (i.e. laser beam power and welding speed, as well as energy input) of butt joints of the 2.0 mm thick stainless steel AISI 304 sheets on the weld shape and joint quality. Design/methodology/approach: The preliminary trials of simulated laser welding by melting the austenitic stainless steel sheets (the so called bead-on-plate welding), as well as the welding of the test butt joints, were carried out using the high-power diode laser (HPDL) ROFIN DL 020, without the additional material (the technique of autogenous welding). A crucial parameter that determines both the mechanical properties and the corrosive resistance of a joint (the region of a weld and HAZ - heat affected zone) in the case of stainless steels with austenitic structure is energy input, which should be kept at a minimum, and at the same time full penetration and a proper shape of the fusion zone should be ensured. The investigations included the macrostructure and microstructure observations by light microscopy, researches of mechanical properties in a static tensile test and also microhardness measurements made by Vickers method. Findings: The results have shown that it is possible to provide a proper shape of the weld of fine-grained structure and narrow heat affected zone, but it requires careful selection of the welding parameters, especially a low energy input. The microhardness measurements showed that the in case of welding the butt joints using the high-power diode laser in HAZ area a slight increase in microhardness to approx. 185HV0.2 compared to base material (160-169HV0.2) and a decrease in microhardness in the fusion zone (FZ) to approx. 140- 150HV0.2 have been observed. All welded sample broke from the joint during the testing at tensile stress between 585 MPa and 605 MPa with corresponding percentage elongation in the range of 45-57%. It can be found that the joints strength is not less than the strength of the base metal of 2.0 mm thick AISI 304 austenitic stainless steel sheet. Research limitations/implications: Studies of the weldability of stainless steels indicate that the basic influence on the quality of welded joints and reduction of thermal distortions has the heat input of welding, moreover the highest quality of welded joints of austenitic stainless steel sheets are ensured only by laser welding. Practical implications: The laser welding technology can be directly applied for welding of austenitic steel AISI 304 sheets 2.0 mm thick. Originality/value: Application of high power diode laser for welding of austenitic stainless steel AISI 304.


2012 ◽  
Vol 585 ◽  
pp. 498-501 ◽  
Author(s):  
Raghuvir Singh ◽  
S.K. Tiwari ◽  
Suman K. Mishra

Surface engineering is one of the most viable methods, in addition to development of new alloys and equipment design, to minimize degradation due to cavitation erosion, and corrosion. Laser surface cladding is relatively a newer engineering technique to produce metallurgically bonded coating for industrial applications due to its inherent benefits. Present paper reports the results obtained on the laser cladding of stainless steel with tungsten carbide (WC) and stellite alloy powder using high power diode laser (HPDL) at various laser parameters. Cladded specimens were characterized for erosion, and corrosion resistance. Both WC and stellite cladding have increased the erosion resistance of stainless steels. WC cladding was found to reduce the corrosion resistance of steel while stellite showed it to increase significantly.


Sign in / Sign up

Export Citation Format

Share Document