microstructural inhomogeneity
Recently Published Documents


TOTAL DOCUMENTS

68
(FIVE YEARS 14)

H-INDEX

16
(FIVE YEARS 1)

Materials ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 4946
Author(s):  
Igor Polozov ◽  
Kirill Starikov ◽  
Anatoly Popovich ◽  
Vadim Sufiiarov

Titanium orthorhombic alloys based on intermetallic Ti2AlNb-phase are attractive materials for lightweight high-temperature applications. However, conventional manufacturing of Ti2AlNb-based alloys is costly and labor-consuming. Additive Manufacturing is an attractive way of producing parts from Ti2AlNb-based alloys. High-temperature substrate preheating during Selective Laser Melting is required to obtain crack-free intermetallic alloys. Due to the nature of substrate preheating, the temperature profile along the build height might be uneven leading to inhomogeneous microstructure and defects. The microstructural homogeneity of the alloy along the build direction was evaluated. The feasibility of mitigating the microstructural inhomogeneity was investigated by fabricating Ti2AlNb-alloy samples with graded microstructure and subjecting them to annealing. Hot isostatic pressing allowed us to achieve a homogeneous microstructure, eliminate residual micro defects, and improve mechanical properties with tensile strength reaching 1027 MPa and 860 MPa at room temperature and 650 °C, correspondingly. Annealing of the microstructurally graded alloy at 1050 °C allowed us to obtain a homogeneous B2 + O microstructure with a uniform microhardness distribution. The results of the study showed that the microstructural inhomogeneity of the titanium orthorhombic alloy obtained by SLM can be mitigated by annealing or hot isostatic pressing. Additionally, it was shown that by applying multiple-laser exposure for processing each layer it is possible to locally tailor the phase volume and morphology and achieve microstructure and properties similar to the Ti2AlNb-alloy obtained at higher preheating temperatures.


Author(s):  
Chunhua Ren ◽  
Xiaochuan Zhang ◽  
Hongwei Ji ◽  
Huaiwen Wang ◽  
Sumit. Hazra ◽  
...  

2021 ◽  
pp. 117015
Author(s):  
S. Bhagavath ◽  
Z. Gong ◽  
T. Wigger ◽  
S. Shah ◽  
B. Ghaffari ◽  
...  

2020 ◽  
pp. 61-67
Author(s):  
N. V. Koptseva ◽  
◽  
Yu. Yu. Efimova ◽  
M. A. Polyakova ◽  
A. E. Gulin ◽  
...  

During wire production, strain fields can be distributed inhomogeneously over the section during drawing and cause structural micro-inhomogeneity, which significantly affects the stability of the process. However, during plastic deformation of carbon steel with a pearlite structure, the interlamellar spacing in the ferrite-carbide mixture and the size of pearlite colonies, which determine the deformation behavior of steel, are of great importance. In addition, in the wire manufacturing technology, heat treatment operations are used with heating the steel to the austenitic state, the temperature of which significantly affects the formation of the structure and properties of the steel. The paper investigates the effect of the austenitization temperature on the structural microheterogeneity of a wire made of carbon steel with a pearlite structure after drawing. The results of studying the microstructure, determining the interlamellar spacing, the anisotropy coefficient of pearlite colonies, as well as the distribution of microhardness over the cross section of the sample during drawing after different temperatures of preliminary austenitization are presented. It is shown that after preliminary austenitization at temperatures of 900, 950 and 1000 °C in a wire made of carbon steel with a pearlite structure, microstructural inhomogeneity in the dispersion of the ferrite-pearlite mixture is observed. It manifests itself as a difference of the interlamellar spacing in pearlite at the surface and in the center of the sample cross section and is retained during subsequent drawing with a total reduction of 8 to 15%. It has been established that the temperature of preliminary austenitization has practically no effect on the anisotropy coeffi cient of pearlite colonies in the initial state after austenitization, and it does not change over the cross section of the sample. However, with subsequent drawing with an increase in the total reduction, the anisotropy coefficient increases, while it increases from the surface to the center of the sample. It is revealed that with an increase in the preliminary austenitization temperature from 900 to 1000 °C, the microstructural inhomogeneity in the drawn wire is manifested to a greater extent, which can be associated with an increase in the grain size of the initial austenite, the size of pearlite colonies, and the interlamellar spacing in pearlite. Microstructural inhomogeneity is confirmed by the nature of the distribution of microhardness over the cross section of the sample. The research was carried out with the financial support of the Russian Foundation for Basic Research and DNT within the framework of the scientific project No. 18-58-45008 IND_a.


2020 ◽  
Vol 33 (7) ◽  
pp. 2088-2097 ◽  
Author(s):  
Xianxian WANG ◽  
Pengfei GAO ◽  
Mei ZHAN ◽  
Ke YANG ◽  
Yunda DONG ◽  
...  

Materials ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 2795 ◽  
Author(s):  
Alireza Vahedi Nemani ◽  
Mahya Ghaffari ◽  
Ali Nasiri

Wire arc additive manufacturing (WAAM) is known to induce a considerable microstructural inhomogeneity and anisotropy in mechanical properties, which can potentially be minimized by adopting appropriate post-printing heat treatment. In this paper, the effects of two heat treatment cycles, including hardening and normalizing on the microstructure and mechanical properties of a WAAM-fabricated low-carbon low-alloy steel (ER70S-6) are studied. The microstructure in the melt pools of the as-printed sample was found to contain a low volume fraction of lamellar pearlite formed along the grain boundaries of polygonal ferrite as the predominant micro-constituents. The grain coarsening in the heat affected zone (HAZ) was also detected at the periphery of each melt pool boundary, leading to a noticeable microstructural inhomogeneity in the as-fabricated sample. In order to modify the nonuniformity of the microstructure, a normalizing treatment was employed to promote a homogenous microstructure with uniform grain size throughout the melt pools and HAZs. Differently, the hardening treatment contributed to the formation of two non-equilibrium micro-constituents, i.e., acicular ferrite and bainite, primarily adjacent to the lamellar pearlite phase. The results of microhardness testing revealed that the normalizing treatment slightly decreases the microhardness of the sample; however, the formation of non-equilibrium phases during hardening process significantly increased the microhardness of the component. Tensile testing of the as-printed part in the building and deposition directions revealed an anisotropic ductility. Although normalizing treatment did not contribute to the tensile strength improvement of the component, it suppressed the observed anisotropy in ductility. On the contrary, the hardening treatment raised the tensile strength, but further intensified the anisotropic behavior of the component.


10.30544/461 ◽  
2020 ◽  
Vol 25 (04) ◽  
pp. 301-313
Author(s):  
Milan Jovanović ◽  
Zoran Mišković ◽  
Vesna Maksimović ◽  
Ivana Cvijović-Alagić

A severely damaged low carbon steel boiler tube was the object of this investigation. Detailed microstructural characterization was performed by optical microscopy, whereas scanning electron microscopy (SEM) was applied only in a few cases. Results show that a variety of microstructures was formed in the material of the damaged boiler tube during its exploitation. The failure of the tube is the result of very inhomogeneous overheating. The side of the boiler tube toward fire (F) was exposed to high overheating temperature, which in some locations was well above the A3 transformation temperature. The side toward boiler (BL) was subjected to lower temperatures, i.e. in the region mostly between A1 and A3 temperatures. Variations in temperatures and cooling rates, which resulted in microstructural inhomogeneity, are the main cause for the formation and multiplication of stresses leading to the rupture of the tube.


Sign in / Sign up

Export Citation Format

Share Document