(Invited) Toward MOF-Enabled Solar Cells. Light Harvesting, Energy Transport, Exciton Splitting, and Delivery of Electrons to Electrodes or Catalysts

2021 ◽  
Vol MA2021-01 (45) ◽  
pp. 1765-1765
Author(s):  
Joseph Hupp ◽  
Subhadip Goswami
2015 ◽  
Vol 51 (17) ◽  
pp. 3501-3510 ◽  
Author(s):  
Monica C. So ◽  
Gary P. Wiederrecht ◽  
Joseph E. Mondloch ◽  
Joseph T. Hupp ◽  
Omar K. Farha

This contribution highlights recent work on the photon collection and energy transport behavior of metal–organic frameworks for excitonic solar cells.


2021 ◽  
Vol 3 (2) ◽  
pp. 262-271
Author(s):  
Pablo Reséndiz-Vázquez ◽  
Ricardo Román-Ancheyta ◽  
Roberto León-Montiel

Transport phenomena in photosynthetic systems have attracted a great deal of attention due to their potential role in devising novel photovoltaic materials. In particular, energy transport in light-harvesting complexes is considered quite efficient due to the balance between coherent quantum evolution and decoherence, a phenomenon coined Environment-Assisted Quantum Transport (ENAQT). Although this effect has been extensively studied, its behavior is typically described in terms of the decoherence’s strength, namely weak, moderate or strong. Here, we study the ENAQT in terms of quantum correlations that go beyond entanglement. Using a subsystem of the Fenna–Matthews–Olson complex, we find that discord-like correlations maximize when the subsystem’s transport efficiency increases, while the entanglement between sites vanishes. Our results suggest that quantum discord is a manifestation of the ENAQT and highlight the importance of beyond-entanglement correlations in photosynthetic energy transport processes.


2011 ◽  
Vol 196 (4) ◽  
pp. 2416-2421 ◽  
Author(s):  
Kun-Mu Lee ◽  
Ying-Chan Hsu ◽  
Masashi Ikegami ◽  
Tsutomu Miyasaka ◽  
K.R. Justin Thomas ◽  
...  

2021 ◽  
Vol 258 ◽  
pp. 123932
Author(s):  
Lekha Peedikakkandy ◽  
Ondřej Pavelka ◽  
Martina Alsterová ◽  
Anna Fučíková ◽  
Jakub Dostál ◽  
...  

Author(s):  
Hongling Guo ◽  
Rutao Meng ◽  
Gang Wang ◽  
Shenghao Wang ◽  
Li Wu ◽  
...  

Fabrication of high efficient solar cells is critical for photovoltaic application. The bandgap-graded absorber layer can not only drive carriers efficient collection but also improve the light harvesting. However, it...


2017 ◽  
Vol 7 (1) ◽  
pp. 199-205 ◽  
Author(s):  
Xiao Jin ◽  
Haiyang Li ◽  
Zihan Chen ◽  
Qin Zhang ◽  
Feng Li ◽  
...  

Author(s):  
Jahan M. Dawlaty ◽  
Akihito Ishizaki ◽  
Arijit K. De ◽  
Graham R. Fleming

We briefly review the coherent quantum beats observed in recent two-dimensional electronic spectroscopy experiments in a photosynthetic-light-harvesting antenna. We emphasize that the decay of the quantum beats in these experiments is limited by ensemble averaging. The in vivo dynamics of energy transport depends upon the local fluctuations of a single photosynthetic complex during the energy transfer time (a few picoseconds). Recent analyses suggest that it remains possible that the quantum-coherent motion may be robust under individual realizations of the environment-induced fluctuations contrary to intuition obtained from condensed phase spectroscopic measurements and reduced density matrices. This result indicates that the decay of the observed quantum coherence can be understood as ensemble dephasing. We propose a fluorescence-detected single-molecule experiment with phase-locked excitation pulses to investigate the coherent dynamics at the level of a single molecule without hindrance by ensemble averaging. We discuss the advantages and limitations of this method. We report our initial results on bulk fluorescence-detected coherent spectroscopy of the Fenna–Mathews–Olson complex.


Sign in / Sign up

Export Citation Format

Share Document