Band-gap-graded Cu2ZnSn(S,Se)4 drives high efficient solar cells

Author(s):  
Hongling Guo ◽  
Rutao Meng ◽  
Gang Wang ◽  
Shenghao Wang ◽  
Li Wu ◽  
...  

Fabrication of high efficient solar cells is critical for photovoltaic application. The bandgap-graded absorber layer can not only drive carriers efficient collection but also improve the light harvesting. However, it...

2020 ◽  
Author(s):  
Nahuel Martínez ◽  
Carlos Pinzón ◽  
Guillermo Casas ◽  
Fernando Alvira ◽  
Marcelo Cappelletti

All-inorganic perovskite solar cells (PSCs) with inverted p-i-n configuration have not yet reached the high efficiency achieved in the normal n-i-p architecture. However, the inverted all-inorganic PSC are more compatible with the fabrication of tandem solar cells. In this work, a theoretical study of all-inorganic PSCs with inverted structure ITO/HTL/CsPbI<sub>x</sub>Br<sub>3</sub>−x/ETL/Ag, has been performed by means of computer simulation. Four p‐type inorganic materials (NiO, Cu<sub>2</sub>O, CuSCN and CuI) and three n-type inorganic materials (ZnO, TiO<sub>2</sub> and SnO<sub>2</sub>) were used as hole and electron transport layers (HTL and ETL), respectively. A band gap of 1.78 eV was used for the CsPbI x Br<sub>3</sub>−x perovskite layer. The simulation results allow identifying that CuI and ZnO are the most appropriate materials as HTL and ETL, respectively. Additionally, optimized values of thickness, acceptor density and defect density in the absorber layer have been obtained for the ITO/CuI/CsPbI x Br<sub>3</sub>−x /ZnO/Ag, from which, an optimum efficiency of 21.82% was achieved. These promising theoretical results aim to improve the manufacturing process of inverted all-inorganic PSCs and to enhance the performance of perovskite–perovskite tandem solar cells. <br>


Materials ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 309
Author(s):  
Alexandra Craft Ludvigsen ◽  
Zhenyun Lan ◽  
Ivano E. Castelli

The use of ferroelectric materials for light-harvesting applications is a possible solution for increasing the efficiency of solar cells and photoelectrocatalytic devices. In this work, we establish a fully autonomous computational workflow to identify light-harvesting materials for water splitting devices based on properties such as stability, size of the band gap, position of the band edges, and ferroelectricity. We have applied this workflow to investigate the Ruddlesden-Popper perovskite class and have identified four new compositions, which show a theoretical efficiency above 5%.


Author(s):  
Congcong Cao ◽  
Hanjian Lai ◽  
Hui Chen ◽  
Yulin Zhu ◽  
Mingrui Pu ◽  
...  

The light harvesting and photocurrent generation from acceptors largely determine the photovoltaic performance of organic solar cells (OSCs). We have designed and prepared two medium band gap non-fullerene acceptors (NFAs),...


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Wanchun Xiang ◽  
Zaiwei Wang ◽  
Dominik J. Kubicki ◽  
Xueting Wang ◽  
Wolfgang Tress ◽  
...  

Abstract All-inorganic metal halide perovskites are showing promising development towards efficient long-term stable materials and solar cells. Element doping, especially on the lead site, has been proved to be a useful strategy to obtain the desired film quality and material phase for high efficient and stable inorganic perovskite solar cells. Here we demonstrate a function by adding barium in CsPbI2Br. We find that barium is not incorporated into the perovskite lattice but induces phase segregation, resulting in a change in the iodide/bromide ratio compared with the precursor stoichiometry and consequently a reduction in the band gap energy of the perovskite phase. The device with 20 mol% barium shows a high power conversion efficiency of 14.0% and a great suppression of non-radiative recombination within the inorganic perovskite, yielding a high open-circuit voltage of 1.33 V and an external quantum efficiency of electroluminescence of 10−4.


Nanoscale ◽  
2016 ◽  
Vol 8 (12) ◽  
pp. 6335-6340 ◽  
Author(s):  
Sanghyun Paek ◽  
Malik Abdul Rub ◽  
Hyeju Choi ◽  
Samia A. Kosa ◽  
Khalid A. Alamry ◽  
...  

Asymmetric squaraine-based low band-gap hole transporting material acting as both light harvesting and hole transporting layers in perovskite solar cells.


2019 ◽  
Vol 01 (02) ◽  
pp. 172-181 ◽  
Author(s):  
Ahmed Idda ◽  
Leila Ayat ◽  
said Bentouba ◽  
◽  
◽  
...  

Hydrogeneted amorphous silicon (a-Si:H) based solar cells are promising candidates for future developments in the photovoltaic industry. In fact, amorphous silicon technology offers significant advantages including low cost fabrication and possibility to deposition on flexible substrat as well as low temperature fabrication. Much progress has been made since the first single junction cell in amorphous silicon made in 1976 by Carlson and Wronski. However, the performance of the solar cells based on a-Si:H is limited by the high defect density and degradation induced by exposure to light, or Staebler-Wronski effect. To become competitive, the performance of the solar cells based on a-Si:H must be improved. In order to improve the performance of a-Si:H solar cells, much research is directed to optimization techniques. The improvement in performance is therefore based on the optimization of the different layers of the solar cell, in particular, the window layer and the absorber layer (intrinsic). The aim of this work is to give an overview on the different techniques and strategies that is used to improve the performance of solar cell. This work is therefore focus in three main areas: first, optimization of window layer, in particular, the p/i interface using wide band gap alloys such as a-SiC:H, second development of high quality absorber layer using band gap engineering, and alloys such as a-SiGe:H. last, optimizing n-type layer and i/n interface.


Author(s):  
Ahmed Thabet ◽  
Safaa Abdelhady ◽  
Youssef Mobarak

<span>This paper investigates on new design of heterojunction quantum dot (HJQD) photovoltaics solar cells CdS/PbS that is based on quantum dot metallics PbS core/shell absorber layer and quantum dot window layer. It has been enhanced the performance of traditional HJQD thin film solar cells model based on quantum dot absorber layer and bulk window layer. The new design has been used sub-micro absorber layer thickness to achieve high efficiency with material reduction, low cost, and time. Metallics-semiconductor core/shell absorber layer has been succeeded for improving the optical characteristics such energy band gap and the absorption of absorber layer materials, also enhancing the performance of HJQD ITO/CdS/QDPbS/Au, sub micro thin film solar cells. Finally, it has been formulating the quantum dot (QD) metallic cores concentration effect on the absorption, energy band gap and electron-hole generation rate in absorber layers, external quantum efficiency, energy conversion efficiency, fill factor of the innovative design of HJQD cells.</span>


2019 ◽  
Vol 34 (05) ◽  
pp. 2050065
Author(s):  
Tariq Alzoubi ◽  
Mohamed Moustafa

The influence of Molybdenum diselenide transition metal dichalcogenide material (p-type MoSe2 TMDC) as an interfacial layer between the ultra-thin Cu (In, Ga)Se2 (CIGS) absorber layer, with thickness less than 500[Formula: see text]nm, and molybdenum back contact was studied using SCAPS-1D simulation package. The possible effects of the p-MoSe2 layer on the electrical properties and the photovoltaic parameters of the CIGS thin-film solar cells have been investigated. Band gap energy, carrier concentration, and the layer thickness of the p-MoSe2 were varied in this study. The optimum band gap is found to be of 1.3 eV. Interfacial layers of thicknesses less than 200 nm have been found to cause deterioration for the overall cell performance. This might be attributed to the increase in the back-contact recombination current and the reduction of the built-in potential at p-MoSe2/CIGS junction. Furthermore, the MoSe2 layer would form the so-called back surface field (BSF), due to the associated wider band gap with respect to that of CIGS absorber layer. Additionally, the simulation of the I–V characteristic showed a higher slope which implies that MoSe2 layer at the CIGS/Mo interface acts in a beneficial way on the CIGS/Mo hetero-contact adapting it from Schottky type contact to quasi-ohmic contact. The conversion efficiency has increased significantly from 14.61% to 22.08%, without and with the MoSe2 layer, respectively. These findings are very promising for future high performance and cost-effective solar cell devices.


Sign in / Sign up

Export Citation Format

Share Document