Cheap and Simple Electrochemical Sensors with Closed-Cell MIP-Coated Bipolar Electrode Arrays for Sub-Ppb Detection of PFOS in Water

2021 ◽  
Vol MA2021-02 (57) ◽  
pp. 1818-1818
Author(s):  
Ivan Mondaca Medina ◽  
Ryan Freedman ◽  
Jeronimo Miranda ◽  
Nick Humphrey ◽  
Rowan Kinney ◽  
...  
2020 ◽  
Vol 123 (1) ◽  
pp. 259-276 ◽  
Author(s):  
Kristin N. Hageman ◽  
Margaret R. Chow ◽  
Dale Roberts ◽  
Peter J. Boutros ◽  
Angela Tooker ◽  
...  

From animal experiments by Cohen and Suzuki et al. in the 1960s to the first-in-human clinical trials now in progress, prosthetic electrical stimulation targeting semicircular canal branches of the vestibular nerve has proven effective at driving directionally appropriate vestibulo-ocular reflex eye movements, postural responses, and perception. That work was considerably facilitated by the fact that all hair cells and primary afferent neurons in each canal have the same directional sensitivity to head rotation, the three canals’ ampullary nerves are geometrically distinct from one another, and electrically evoked three-dimensional (3D) canal-ocular reflex responses approximate a simple vector sum of linearly independent components representing relative excitation of each of the three canals. In contrast, selective prosthetic stimulation of the utricle and saccule has been difficult to achieve, because hair cells and afferents with many different directional sensitivities are densely packed in those endorgans and the relationship between 3D otolith-ocular reflex responses and the natural and/or prosthetic stimuli that elicit them is more complex. As a result, controversy exists regarding whether selective, controllable stimulation of electrically evoked otolith-ocular reflexes (eeOOR) is possible. Using micromachined, planar arrays of electrodes implanted in the labyrinth, we quantified 3D, binocular eeOOR responses to prosthetic electrical stimulation targeting the utricle, saccule, and semicircular canals of alert chinchillas. Stimuli delivered via near-bipolar electrode pairs near the maculae elicited sustained ocular countertilt responses that grew reliably with pulse rate and pulse amplitude, varied in direction according to which stimulating electrode was employed, and exhibited temporal dynamics consistent with responses expected for isolated macular stimulation. NEW & NOTEWORTHY As the second in a pair of papers on Binocular 3D Otolith-Ocular Reflexes, this paper describes new planar electrode arrays and vestibular prosthesis architecture designed to target the three semicircular canals and the utricle and saccule. With this technological advancement, electrically evoked otolith-ocular reflexes due to stimulation via utricle- and saccule-targeted electrodes were recorded in chinchillas. Results demonstrate advances toward achieving selective stimulation of the utricle and saccule.


1990 ◽  
Vol 1 (6) ◽  
pp. 496-505 ◽  
Author(s):  
CARL F. PIEPER ◽  
GERALD LAWRIE ◽  
DANIEL PARSONS ◽  
JEFFREY LACY ◽  
ROBERT ROBERTS ◽  
...  

2021 ◽  
Vol 93 (12) ◽  
pp. 5114-5122
Author(s):  
Zhaoyan Tian ◽  
Yafeng Wu ◽  
Fengying Shao ◽  
Dezhi Tang ◽  
Xiang Qin ◽  
...  

2018 ◽  
Vol 60 (6) ◽  
pp. 583-590 ◽  
Author(s):  
Jinglin Xu ◽  
Jianqing Liu ◽  
Wenbin Gu ◽  
Zhenxiong Wang ◽  
Xin Liu ◽  
...  

2007 ◽  
Vol 107 (3) ◽  
pp. 488-494 ◽  
Author(s):  
Jeffrey I. Berman ◽  
Mitchel S. Berger ◽  
Sungwon Chung ◽  
Srikantan S. Nagarajan ◽  
Roland G. Henry

Object Resecting brain tumors involves the risk of damaging the descending motor pathway. Diffusion tensor (DT)–imaged fiber tracking is a noninvasive magnetic resonance (MR) technique that can delineate the subcortical course of the motor pathway. The goal of this study was to use intraoperative subcortical stimulation mapping of the motor tract and magnetic source imaging to validate the utility of DT-imaged fiber tracking as a tool for presurgical planning. Methods Diffusion tensor-imaged fiber tracks of the motor tract were generated preoperatively in nine patients with gliomas. A mask of the resultant fiber tracks was overlaid on high-resolution T1- and T2-weighted anatomical MR images and used for stereotactic surgical navigation. Magnetic source imaging was performed in seven of the patients to identify functional somatosensory cortices. During resection, subcortical stimulation mapping of the motor pathway was performed within the white matter using a bipolar electrode. Results A total of 16 subcortical motor stimulations were stereotactically identified in nine patients. The mean distance between the stimulation sites and the DT-imaged fiber tracks was 8.7 ±3.1 mm (±standard deviation). The measured distance between subcortical stimulation sites and DT-imaged fiber tracks combines tracking technique errors and all errors encountered with stereotactic navigation. Conclusions Fiber tracks delineated using DT imaging can be used to identify the motor tract in deep white matter and define a safety margin around the tract.


Sign in / Sign up

Export Citation Format

Share Document