scholarly journals Binocular 3D otolith-ocular reflexes: responses of chinchillas to prosthetic electrical stimulation targeting the utricle and saccule

2020 ◽  
Vol 123 (1) ◽  
pp. 259-276 ◽  
Author(s):  
Kristin N. Hageman ◽  
Margaret R. Chow ◽  
Dale Roberts ◽  
Peter J. Boutros ◽  
Angela Tooker ◽  
...  

From animal experiments by Cohen and Suzuki et al. in the 1960s to the first-in-human clinical trials now in progress, prosthetic electrical stimulation targeting semicircular canal branches of the vestibular nerve has proven effective at driving directionally appropriate vestibulo-ocular reflex eye movements, postural responses, and perception. That work was considerably facilitated by the fact that all hair cells and primary afferent neurons in each canal have the same directional sensitivity to head rotation, the three canals’ ampullary nerves are geometrically distinct from one another, and electrically evoked three-dimensional (3D) canal-ocular reflex responses approximate a simple vector sum of linearly independent components representing relative excitation of each of the three canals. In contrast, selective prosthetic stimulation of the utricle and saccule has been difficult to achieve, because hair cells and afferents with many different directional sensitivities are densely packed in those endorgans and the relationship between 3D otolith-ocular reflex responses and the natural and/or prosthetic stimuli that elicit them is more complex. As a result, controversy exists regarding whether selective, controllable stimulation of electrically evoked otolith-ocular reflexes (eeOOR) is possible. Using micromachined, planar arrays of electrodes implanted in the labyrinth, we quantified 3D, binocular eeOOR responses to prosthetic electrical stimulation targeting the utricle, saccule, and semicircular canals of alert chinchillas. Stimuli delivered via near-bipolar electrode pairs near the maculae elicited sustained ocular countertilt responses that grew reliably with pulse rate and pulse amplitude, varied in direction according to which stimulating electrode was employed, and exhibited temporal dynamics consistent with responses expected for isolated macular stimulation. NEW & NOTEWORTHY As the second in a pair of papers on Binocular 3D Otolith-Ocular Reflexes, this paper describes new planar electrode arrays and vestibular prosthesis architecture designed to target the three semicircular canals and the utricle and saccule. With this technological advancement, electrically evoked otolith-ocular reflexes due to stimulation via utricle- and saccule-targeted electrodes were recorded in chinchillas. Results demonstrate advances toward achieving selective stimulation of the utricle and saccule.

1973 ◽  
Vol 82 (4) ◽  
pp. 486-503 ◽  
Author(s):  
Michael M. Merzenich ◽  
Robin P. Michelson ◽  
C. Robert Pettit ◽  
Robert A. Schindler ◽  
Miriam Reid

A series of psychoacoustic experiments was conducted in subjects implanted with a permanent intracochlear bipolar electrode. These experiments were designed to reveal the nature of the sensation evoked by direct sinusoidal electrical stimulation of the acoustic nerve. A series of single unit experiments in the inferior colliculus of cats was then conducted, using intracochlear stimulus electrodes identical to those implanted in human subjects in all respects except size, and using identical stimuli. These physiological experiments were designed to reveal how sounds evoked by intracochlear electrical stimulation in humans are generated and encoded in the auditory nervous system. Among the results were the following: 1) The sensation arises from direct electrical stimulation of the acoustic nerve. It is not “electrophonic” hearing arising from electro-mechanical excitation of hair cells. 2) While sounds are heard with electrical stimulation at frequencies from below 25 to above 10,000 Hz, the useful range of discriminative hearing is limited to frequencies below 400–600 Hz. 3) There is no “place” coding of electrical stimuli of different frequency. Tonal sensations generated by electrical stimulation must be encoded by the time order of discharge of auditory neurons. 4) The periods of sinusoidal electrical stimuli are encoded in discharges of inferior colliculus neurons at frequencies up to 400–600 Hz. 5) Both psychoacoustic and physiological evidence indicates that the low tone sensations evoked by electrical stimulation are akin to the sensations of “periodicity pitch” generated in the normal cochlea. 6) Most cochlear hair cells are lost with intracochlear implantation with this electrode. Most ganglion cells survive implantation. Implications of these experiments for further development of an acoustic prosthesis are discussed.


1987 ◽  
Vol 96 (1) ◽  
pp. 11-18 ◽  
Author(s):  
Margarita Martinez-Gomez ◽  
Pablo Pacheco ◽  
Bernardo Dubrovsky

1975 ◽  
Vol 67 (3) ◽  
pp. 431-438 ◽  
Author(s):  
D. T. DAVIES ◽  
B. K. FOLLETT

SUMMARY Experiments were undertaken to localize those hypothalamic areas in the male quail (Coturnix coturnix japonica) where electrical stimulation would increase LH secretion. The posterior basal hypothalamus was stimulated with rectangular pulses (height 500 μA) through a bipolar electrode for 6 min, blood samples being taken for LH assay 20 min before, and 2, 10, 20 and 30 min after stimulation. The highest plasma concentration was observed in the 2 min sample. Over the next 30 min the LH level decreased to the resting concentration. The relative increase in LH level was greatest in sexually immature quail and least in photostimulated castrated birds, although the highest absolute levels were seen in the castrated quail. There were no statistical differences between the magnitude of the LH increases in sexually immature, mature and castrated quail. Various hypothalamic regions were then stimulated with a smaller current (200 μA) applied for only 2 min. A highly significant rise in LH followed stimulation of either the tuberal hypothalamus (postero-dorsal part of the infundibular nuclear complex, PD-INC), or the preoptic region (POR) while stimulation 0·5–1·5 mm away from these regions did not change LH secretion. Stimulation of the anterior basal hypothalamus, or of the suprachiasmatic area, caused a significant rise in LH concentration although this was less than that seen after stimulation of the POR. Stimulation in the POR or the PD-INC was ineffective if the tuberal hypothalamus had been deafferentated surgically some days previously. The data complement the studies in which destruction of the PD-INC or the POR by electrolytic lesions has been shown to block photoperiodically induced testicular growth and LH secretion.


1992 ◽  
Vol 263 (5) ◽  
pp. C1088-C1095 ◽  
Author(s):  
S. Ohnishi ◽  
M. Hara ◽  
M. Inoue ◽  
T. Yamashita ◽  
T. Kumazawa ◽  
...  

Slow shortening of cochlear outer hair cells has been speculated to modify cochlear sensitivity. Tetanic electrical field stimulation of isolated outer hair cells from guinea pigs shortened the cells for 2-3 min. Electrical stimulation reduced cell length and volume (-13.5 +/- 1.5 and -37.3 +/- 3.0% of initial values, respectively, n = 16) and decreased the intracellular Cl- concentration. Cytochalasin B (100 microM) inhibited electrical stimulation-induced shortening but not volume reduction. The following chemicals or manipulations inhibited the responses: 10 microM furosemide, 0.1 mM 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS), 1 mM anthracene-9-carboxylic acid (AC9), 25 mM tetraethylammonium, 2.3 microM charybdotoxin (ChTX), 250 nM omega-conotoxin, and Ca(2+)-free medium. These findings suggest that both electrical stimulation-induced shortening and shrinkage of outer hair cells result not only from an actin-mediated contractile force, but also from Cl- efflux through furosemide-, DIDS-, and AC9-sensitive Cl- channels, and K+ efflux through ChTX-sensitive K+ channels.


2010 ◽  
Vol 25 (6) ◽  
pp. 475-478 ◽  
Author(s):  
Rodrigo Guellner Ghedini ◽  
Ane Margarites ◽  
Elaine Aparecida Felix ◽  
Rogério Gastal Xavier ◽  
Cristiano Feijó Andrade

PURPOSE: To develop an animal model of diaphragmatic electrical stimulation able to generate an appropriate ventilatory support through the direct implantation of electrodes in the diaphragm (electroventilation). METHODS: Six New Zealand female rabbits (2-3 kg) were placed on mechanical ventilation. Then, a laparotomy was performed in order to identify the motor points in each hemidiaphragm, followed by the implantation of the electrodes for diaphragmatic stimulation. We tested two types of electrodes according to the conduction of electrical stimulation: unipolar and bipolar. The electrodes were placed on different occasions in the same animals and tested with current intensities of 20, 26 and 32 mA. Each current intensity was repeated three times for 10 respiratory cycles with 1 minute interval between each cycle, and 5 minutes for new current intensity. We recorded the relationship between current intensity and inspiratory volume. RESULTS: The electrodes adequately stimulate the diaphragm and obtain inspired volumes using different intensity currents. The bipolar electrode generated inspiratory volumes as high as 4.5 times of baseline while the unipolar electrode reached up to 3.5 times of baseline. CONCLUSION: This model has proved to be effective for studying the performance of the diaphragm under different electrical stimulations using different set of electrodes.


Sign in / Sign up

Export Citation Format

Share Document