scholarly journals Electrophysiology for biomedical engineering students: a practical and theoretical course in animal electrocorticography

2016 ◽  
Vol 40 (3) ◽  
pp. 402-409 ◽  
Author(s):  
Ana L. Albarracín ◽  
Fernando D. Farfán ◽  
Marcos A. Coletti ◽  
Pablo Y. Teruya ◽  
Carmelo J. Felice

The major challenge in laboratory teaching is the application of abstract concepts in simple and direct practical lessons. However, students rarely have the opportunity to participate in a laboratory that combines practical learning with a realistic research experience. In the Biomedical Engineering career, we offer short and optional courses to complement studies for students as they initiate their Graduation Project. The objective of these theoretical and practical courses is to introduce students to the topics of their projects. The present work describes an experience in electrophysiology to teach undergraduate students how to extract cortical information using electrocorticographic techniques. Students actively participate in some parts of the experience and then process and analyze the data obtained with different signal processing tools. In postlaboratory evaluations, students described the course as an exceptional opportunity for students interested in following a postgraduate science program and fully appreciated their contents.

2021 ◽  
Vol 4 (4) ◽  
pp. 23-32
Author(s):  
Jacques C. Richard ◽  
So Yoon Yoon

This study reports results from a three-year implementation of a Research Experiences for Undergraduates (REU) program funded by the National Science Foundation in aerospace engineering at a public research university in the southwestern United States. Students’ perceptions of research knowledge, skills, and engineering career paths were all positively affected.


2009 ◽  
Vol 33 (2) ◽  
pp. 115-120 ◽  
Author(s):  
Ana L. Albarracín ◽  
Fernando D. Farfán ◽  
Carmelo J. Felice

The major challenge in laboratory teaching is the application of abstract concepts in simple and direct practical lessons. However, students rarely have the opportunity to participate in a laboratory that combines practical learning with a realistic research experience. In the Bioengineering Department, we started an experiential laboratory physiology to teach graduated students some aspects of sensorial physiology and exposes them to laboratory skills in instrumentation and physiological measurements. Students were able to analyze and quantify the effects of activation of mechanoreceptors in multifiber afferent discharges using equipment that was not overly sophisticated. In consequence, this practical laboratory helps students to make connections with physiological concepts acquired in theoretical classes and to introduce them to electrophysiological research.


2018 ◽  
Author(s):  
Alexander James Carroll ◽  
Shelby Hallman

This presentation will share the results of a longitudinal cohort study of undergraduate students matriculating through the UNC & NC State Joint Department of Biomedical Engineering. Over the last few years, students in this program have participated in an experimental, specialized information literacy training program aimed at preparing them to navigate the labyrinth of business hurdles associated with medical innovation and entrepreneurship. This longitudinal study, led by two librarians, sought to determine whether an intensive, specialized information literacy training program could introduce undergraduate biomedical engineering students to the complex environment surrounding innovative design in healthcare and medical entrepreneurship in order to improve their design projects. In addition to discussing our study’s results, we will share our lessons learned from conducting this study and some possible implications for professional practice. We will close with a discussion of the challenges involved in partnering with an academic department to conduct formal assessments of student learning, and by sharing practical strategies that other librarians can use to identify opportunities to build similar partnerships at their local institutions.Originally presented at the Triangle Research Libraries Network (TRLN) Annual Meeting 2018 in Durham, NC on August 20, 2018.


2013 ◽  
Vol 37 (2) ◽  
pp. 176-183 ◽  
Author(s):  
Regina K. Nelson ◽  
Naomi C. Chesler ◽  
Kevin T. Strang

Physiology is a core requirement in the undergraduate biomedical engineering curriculum. In one or two introductory physiology courses, engineering students must learn physiology sufficiently to support learning in their subsequent engineering courses and careers. As preparation for future learning, physiology instruction centered on concepts may help engineering students to further develop their physiology and biomedical engineering knowledge. Following the Backward Design instructional model, a series of seven concept-based lessons was developed for undergraduate engineering students. These online lessons were created as prerequisite physiology training to prepare students to engage in a collaborative engineering challenge activity. This work is presented as an example of how to convert standard, organ system-based physiology content into concept-based content lessons.


Author(s):  
M. Salim Azzouz ◽  
Jan Brink

Teaching senior design courses and labs has not been an easy task for the two authors. It has been rather a daunting working task associated with great learning experiences. It was decided early on from the initiation of the mechanical engineering program at the McCoy School of Engineering at Midwestern State University that the senior design project within the senior design class is a testing and enriching experience for senior mechanical engineering students as well as the teaching faculty. The senior design course and labs are conducted as a research experience for undergraduate students and their assigned faculty. The proposed senior project spans over two semesters, fall and spring, where the students experience a full mechanical engineering related project from the inception phase, through the design and construction phases, and finishing with the testing and analysis phases. The inception phase stands essentially for the brainstorming phase where the students are required to come-up with a set of diverse solutions to their assigned project problem. The design and construction phases stand for choosing an optimal particular solution for their problem according to a set of defined criteria. Then, the students start the preliminary design phase with related cost estimation, and then finalize the design with a set of final drawings. After the design phase, the students start building a machine, an apparatus, a prototype or putting together the elements of a process. In this period they work intensely, with their faculty, the purchasing department, and mostly the department machinist, or the surrounding town machine shops. The testing and analysis phase stands for designing an experimental set-up, writing a testing procedure, and obtaining real time recorded data and proceeding with its analysis. In this technical paper, the authors talk about the requirements for a senior project known as the deliverables, the teaching tools used throughout the class work and labs, the students’ partial and final PowerPoints presentations and weekly and final reports. The authors describe the students overall achievements, and the archiving of the projects. Additionally, the authors talk about the twists and turns encountered during a senior project, with students, other faculty, the machinist, the lab technician, the secretary, and suppliers, and other difficulties experienced in running a full project with real final products. Finally, the authors talk about the aftermath of a senior project, eventual publications related to the project, and what is the view point of the American Board of Engineering and Technology (ABET) on these senior projects.


2008 ◽  
Vol 18 (3) ◽  
pp. 14-19 ◽  
Author(s):  
Angel E. González-Lizardo

This work reports the results of an ad hoc interdisciplinary research experience for undergraduate engineering students at the Plasma Engineering Laboratory (PEL) of the Polytechnic University of Puerto Rico (PUPR). The strong features of this experience and their relationship with Accreditation Board for Engineering and Technology (ABET) outcomes are pointed out, and a qualitative description of the results is discussed, in terms of the performance of the students during the experience and after it. An example of the different activities performed by a team of undergraduate students, and their relationship with the ABET outcomes is presented. The undergraduate research at the PEL provides the students with a unique opportunity to practice engineering before graduation through real life problems, innovation, collaboration with other institutions, and presentation of their work for engineering and scientific audiences.


2020 ◽  
Vol 142 (11) ◽  
Author(s):  
Taisiya Sigaeva ◽  
Cyrus J. B. M. Fiori ◽  
Maria J. Pino Alban ◽  
Youssef Beauferris ◽  
Donovan Stagg ◽  
...  

Abstract In this paper, we bridged faculty research expertise with concept-based learning pedagogy to design and implement a unique laboratory experience for biomedical engineering undergraduate students enrolled in the biomechanics of tissues course at the University of Calgary. This laboratory aimed to increase student engagement, facilitate deeper understanding of course content, and provide an opportunity for accelerated undergraduate research through “hands-on,” “minds-on,” and “science-up” learning components, respectively. The laboratory exercise involves testing aortic tissues using a novel miniaturized planar biaxial machine. This type of machine is normally reserved for use in the context of research. The relevance of the proposed laboratory as a teaching tool was assessed using student feedback. Results indicate an overall valuable and positive learning experience for students.


2018 ◽  
Vol 1 (1) ◽  
pp. 968-973
Author(s):  
Maya Abi Akl ◽  
Othmane Bouhali ◽  
Yassine Toufique

Various studies have shown the crucial and strong impact that undergraduate research has on the learning outcome of students and its role in clarifying their career path. Therefore, many colleges and universities are promoting undergraduate research experience amongst their students. Texas A&M University at Qatar (TAMUQ), a branch campus of Texas A&M University in College Station in the state of Texas and one of the six American University campuses in Education City, Qatar is actively involving its engineering students in research projects spanning different disciplines across its academic programs. This paper describes how the High Energy and Medical Physics Group at TAMUQ supports and engages the undergraduate students in research activities, summarizes the outcomes of their work and the impact on their career.


Author(s):  
Claire Mah ◽  
Daphne Hong ◽  
Vanessa Chen ◽  
Emmanuel Stefanakis

2006 ◽  
Vol 5 (2) ◽  
pp. 175-187 ◽  
Author(s):  
Kyle J. Frantz ◽  
Robert L. DeHaan ◽  
Melissa K. Demetrikopoulos ◽  
Laura L. Carruth

Undergraduate students may be attracted to science and retained in science by engaging in laboratory research. Experience as an apprentice in a scientist's laboratory can be effective in this regard, but the pool of willing scientists is sometimes limited and sustained contact between students and faculty is sometimes minimal. We report outcomes from two different models of a summer neuroscience research program: an Apprenticeship Model (AM) in which individual students joined established research laboratories, and a Collaborative Learning Model (CLM) in which teams of students worked through a guided curriculum and then conducted independent experimentation. Assessed outcomes included attitudes toward science, attitudes toward neuroscience, confidence with neuroscience concepts, and confidence with science skills, measured via pre-, mid-, and postprogram surveys. Both models elevated attitudes toward neuroscience, confidence with neuroscience concepts, and confidence with science skills, but neither model altered attitudes toward science. Consistent with the CLM design emphasizing independent experimentation, only CLM participants reported elevated ability to design experiments. The present data comprise the first of five yearly analyses on this cohort of participants; long-term follow-up will determine whether the two program models are equally effective routes to research or other science-related careers for novice undergraduate neuroscientists.


Sign in / Sign up

Export Citation Format

Share Document