scholarly journals MUREs - a new member of the URE-CURE family of research opportunities for undergrads

Author(s):  
Holly E. Bates ◽  
Shanna Lowes ◽  
Sarah L. West

Undergraduate research experiences are important for the development of scientific identity, appreciation of authentic research, and to improve persistence towards science careers. We identified a gap in experiential research opportunities for undergraduate Biology students who were seeking a formal yet small-scale research experience that was unique to their own interests and career aspirations. These opportunities may be especially worthwhile for STEM students aspiring to non-research scientific careers (i.e., medicine, dentistry, forensics, communication) and underrepresented STEM students. Here, we reflect on the use of small-scale, individualized undergraduate research experiences that are based on established methods (MURE). These experiences have helped to fill this gap and create problem-centred learning opportunities for undergraduate students that are as unique as the students themselves.

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Katelyn M. Cooper ◽  
Jacqueline M. Cala ◽  
Sara E. Brownell

Abstract Background Undergraduate research experiences are becoming essential for pursuing future opportunities in science, but little has been done to identify what factors predict which students get to participate in research and which students do not. In this manuscript, we propose “scientific research capital” and specifically “scientific research cultural capital” as constructs to explain what students may need to know and do in order to successfully engage in an undergraduate research experience. We begin to articulate what comprises one component of scientific research cultural capital, embodied cultural capital, by identifying the knowledge that students may need to have in order to obtain an undergraduate research experience at a large, research-intensive institution where there are many more undergraduates vying for research positions than opportunities available. We interviewed 43 researchers, defined as undergraduates who had participated in research, and 42 non-researchers, defined as undergraduates who were interested in participating in research but had not yet successfully obtained a position, in a biology department at an R1 institution. We analyzed the data using inductive coding. Results We identified 10 “rules of research” or aspects of scientific research cultural capital that undergraduates reported about finding and securing undergraduate research. We used logistic regression to test whether undergraduate researchers were more likely than non-researchers to know particular rules. Researchers were more likely than non-researchers to know rules about securing research opportunities. Conclusions Since researchers were more likely than non-researchers to know rules related to securing research, educating students about how to secure research experiences and encouraging faculty to re-examine the criteria they use to admit students into their labs may be a key step in leveling the playing field for students who are vying for research positions. We propose that the construct of scientific research cultural capital can help publicize the hidden curriculum of undergraduate research so that students can more equitably gain access to undergraduate research.


Author(s):  
Abbey E. Fischer ◽  
Kathy R. Immel ◽  
Kristi Wilkum ◽  
Laura R. Lee

The call to increase student participation in high-impact practices (HIPs) to improve student learning, satisfaction, and retention is being answered in a multitude of ways. Faculty and staff involved in undergraduate research see this as validation of their efforts, which it is. However, Kuh & O’Donnell’s (2013) work challenges research mentors to reevaluate their efforts in order to intentionally provide an even richer and more engaging research experience. Making undergraduate research a high-impact practice requires thinking inclusively about how the research experience can be scaled across the curriculum, adjusted to increase student engagement, and adapted to student preparation and desired learning outcomes. This article presents the work of a statewide multi-disciplinary faculty team that developed a scalable taxonomy for incorporating high-impact practices into student learning experiences and to serve as a roadmap for designing and assessing undergraduate research experiences. The authors offer a layered taxonomy, with milestones of increasing engagement, that establishes what sets a HIP undergraduate research experience apart from other HIP experiences and what distinguishes good practices from high-impact teaching. Aligning undergraduate research experiences with best practices across disciplines, types of research opportunities, and student achievement level was a key goal in the taxonomy development. We present cases where the taxonomy was applied to research opportunities embedded in general education courses across disciplines and different modalities. In these vignettes, the utility of the taxonomy as a tool for assessing course design and teaching effectiveness is examined and common challenges in development, implementation, and assessment of student learning experiences are also explored.


2014 ◽  
Vol 13 (1) ◽  
pp. 29-40 ◽  
Author(s):  
Lisa Corwin Auchincloss ◽  
Sandra L. Laursen ◽  
Janet L. Branchaw ◽  
Kevin Eagan ◽  
Mark Graham ◽  
...  

The Course-Based Undergraduate Research Experiences Network (CUREnet) was initiated in 2012 with funding from the National Science Foundation program for Research Coordination Networks in Undergraduate Biology Education. CUREnet aims to address topics, problems, and opportunities inherent to integrating research experiences into undergraduate courses. During CUREnet meetings and discussions, it became apparent that there is need for a clear definition of what constitutes a CURE and systematic exploration of what makes CUREs meaningful in terms of student learning. Thus, we assembled a small working group of people with expertise in CURE instruction and assessment to: 1) draft an operational definition of a CURE, with the aim of defining what makes a laboratory course or project a “research experience”; 2) summarize research on CUREs, as well as findings from studies of undergraduate research internships that would be useful for thinking about how students are influenced by participating in CUREs; and 3) identify areas of greatest need with respect to CURE assessment, and directions for future research on and evaluation of CUREs. This report summarizes the outcomes and recommendations of this meeting.


2016 ◽  
Vol 78 (6) ◽  
pp. 448-455 ◽  
Author(s):  
Arundhati Bakshi ◽  
Lorelei E. Patrick ◽  
E. William Wischusen

There have been many calls to make research experiences available to more undergraduate students. One way to do this is to provide course-based undergraduate research experiences (CUREs), but providing these on a scale large enough to accommodate many students can be a daunting undertaking. Indeed, other researchers have identified time to develop materials and course size as significant barriers to widespread implementation of CUREs. Based on our own experiences implementing CUREs at a large research university, we present a flexible framework that we have adapted to multiple research projects, share class materials and rubrics we have developed, and suggest logistical strategies to lower these implementation barriers.


2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Gaye D. Ceyhan ◽  
John W. Tillotson

Abstract Background Prior research reported that motivational beliefs that individuals attach to specific tasks predict continuing interest and persistence in the task. A motivational approach may be particularly useful for understanding undergraduate students’ engagement with research in their first and second years in college. The current study utilizes the expectancy-value theory of achievement motivation to qualitatively explore how much and in what ways early year undergraduate researchers value their research experience and what kinds of costs they associate with it. Results The results revealed that intrinsic value had the highest expression in participants’ motivation to engage in research. The second most expressed value type was the utility value of undergraduate research with regards to obtaining the desired outcomes, and attainment value played the least important role in participants’ motivation to engage in research. Findings also indicated that some of the participants associated a cost(s) to their research experience. The highest mentioned perceived cost was opportunity cost, where participants commented on losing other valued alternatives when engaging in research. Participants commented on the time, effort, or amount of work needed to engage in research, and a few participants commented on the emotional cost associated with their research experience in terms of the fear of failure. Conclusion As perceived cost is the least studied in the expectancy-value framework, this study contributes to cost values within college students, particularly about early year undergraduate researchers. The findings of this study can form the basis for future work on exploring ways to increase the values and decrease the costs students experience in their undergraduate research experiences.


2020 ◽  
Vol 1 (1) ◽  
pp. 1-32
Author(s):  
Abbey L. Dvorak ◽  
Eugenia Hernandez-Ruiz ◽  
Halle Nick ◽  
Ruowen Qi ◽  
Celeste Alderete ◽  
...  

Course-based undergraduate research experiences (CURE) allow students opportunities to develop research skills. In a scaffolded CURE, music therapy and music education students composed, evaluated, and selected the music stimuli used in a music and mindfulness study with non-musicians at Site 1 and musicians at Site 2. The purposes of this paper are to (a) describe the process of student music stimuli composition and evaluation for use in a course-based undergraduate research experience and (b) identify benefits, challenges, and lessons learned from the viewpoints of students, graduate assistants, and faculty who participated in the multi-site study. Eight students, two graduate assistants, and two faculty provide an overview of the CURE teaching model and assignments, and share first-person accounts of their experiences participating in this CURE.  


2015 ◽  
Vol 77 (7) ◽  
pp. 526-531 ◽  
Author(s):  
Thomas A. Mennella

The importance of a robust undergraduate research experience has been demonstrated time and again. However, too few undergraduates engage in genuine research and leverage this opportunity. Here, I present a laboratory course in cell and molecular biology that is designed to mimic a true research project. Students work through a 10-step experimental design culminating in the construction, expression, and visualization of microtubules fused to green fluorescent protein in baker's yeast. The steps of this project include the isolation of the tubulin gene from yeast genomic DNA, the cloning of that gene into an expression vector, the amplification of this plasmid in E. coli, and the expression of fluorescent tubulin in yeast. Controls and validation steps are embedded throughout the project, as they would be in a genuine research project. This laboratory course more closely resembles a one-semester undergraduate research experience than a typical lab course. However, because this course reaches a much larger number of students compared with undergraduate research opportunities, it provides students with a valuable research experience that remains confined to the scheduled time block of a typical lab course. In this way, many of the benefits of research are experienced by a large number of undergraduates.


2019 ◽  
Vol 18 (2) ◽  
pp. mr2 ◽  
Author(s):  
Laura A. Diaz-Martinez ◽  
Ginger R. Fisher ◽  
David Esparza ◽  
Jay M. Bhatt ◽  
Christina E. D’Arcy ◽  
...  

Advancement of the scientific enterprise relies on individuals conducting research in an ethical and responsible manner. Educating emergent scholars in the principles of ethics/responsible conduct of research (E/RCR) is therefore critical to ensuring such advancement. The recent impetus to include authentic research opportunities as part of the undergraduate curriculum, via course-based undergraduate research experiences (CUREs), has been shown to increase cognitive and noncognitive student outcomes. Because of these important benefits, CUREs are becoming more common and often constitute the first research experience for many students. However, despite the importance of E/RCR in the research process, we know of few efforts to incorporate E/RCR education into CUREs. The Ethics Network for Course-based Opportunities in Undergraduate Research (ENCOUR) was created to address this concern and promote the integration of E/RCR within CUREs in the biological sciences and related disciplines. During the inaugural ENCOUR meeting, a four-pronged approach was used to develop guidelines for the effective integration of E/RCR in CUREs. This approach included: 1) defining appropriate student learning objectives; 2) identifying relevant curriculum; 3) identifying relevant assessments; and 4) defining key aspects of professional development for CURE facilitators. Meeting outcomes, including the aforementioned E/RCR guidelines, are described herein.


2021 ◽  
Vol 10 (9) ◽  
pp. 328
Author(s):  
Sophie Pierszalowski ◽  
Jana Bouwma-Gearhart ◽  
Lindsay Marlow

While the benefits of undergraduate research experiences for students from underrepresented racial/ethnic groups have been well explored, more research is needed to better understand how students of color access these experiences. We summarize a non-structured review of literature that highlights barriers to success that students of color face in relation to STEM programming at the postsecondary level. Building from this, we report on a structured review of barriers to accessing undergraduate research. We discuss implications of the relative lack of research on access to undergraduate research for students of color at postsecondary institutions. We consider how barriers for the success and persistence of students of color in postsecondary STEM, overall, may manifest as barriers to accessing the undergraduate research experiences argued to help reduce these barriers. With the hope of guiding future relevant action, we put forth recommendations for researchers and practitioners.


Sign in / Sign up

Export Citation Format

Share Document