International Journal of STEM Education
Latest Publications


TOTAL DOCUMENTS

312
(FIVE YEARS 168)

H-INDEX

20
(FIVE YEARS 8)

Published By Springer (Biomed Central Ltd.)

2196-7822, 2196-7822

2022 ◽  
Vol 9 (1) ◽  
Author(s):  
Karen Viskupic ◽  
Brittnee Earl ◽  
Susan E. Shadle

Abstract Background Efforts to achieve improved student outcomes in STEM are critically reliant on the success of reform efforts associated with teaching and learning. Reform efforts include the transformation of course-based practices, community values, and the institutional policies and structures associated with teaching and learning in higher education. Enacting change is a complex process that can be guided by change theories that describe how and why a desired change takes place. We analyzed the utility of a theory-based change model applied in a higher education setting. Our results provide guidance for change efforts at other institutions. Results Use of the CACAO model to guide the transformation of STEM instruction at a large public university resulted in changes to faculty teaching practices and department culture consistent with the vision defined for the project. Such changes varied across STEM departments in accordance with the emergent nature of project activities at the department level. Our application of the CACAO model demonstrates the importance of (1) creating a vision statement (statement of desired change or end-state); (2) attending to different levels of the organization (e.g., individuals, departments, and colleges); (3) working with change agents who are situated to be effective at different organizational levels; and (4) employing strategies to meet the needs and interests of faculty at different stages of adoption with respect to the desired change. Conclusion Our work, which demonstrates the utility of the CACAO model for change and captures its key elements in a matrix, provides a potential foundation for others considering how to frame and study change efforts. It reinforces the value of using change theories to inform change efforts and creates a structure that others can build on and modify, either by applying our CACAO matrix in their own setting or by using the matrix to identify elements that connect to other change theories. We contribute to the growing body of literature which seeks to understand how change theories can be useful and generalizable beyond a single project.


2022 ◽  
Vol 9 (1) ◽  
Author(s):  
Jon R. Star ◽  
Dimitri Tuomela ◽  
Nuria Joglar Prieto ◽  
Peter Hästö ◽  
Riikka Palkki ◽  
...  

Abstract Background In this cross-national study, Spanish, Finnish, and Swedish middle and high school students’ procedural flexibility was examined, with the specific intent of determining whether and how students’ equation-solving accuracy and flexibility varied by country, age, and/or academic track. The 791 student participants were asked to solve twelve linear equations, provide multiple strategies for each equation, and select the best strategy from among their own strategies. Results Our results indicate that knowledge and use of the standard algorithm for solving linear equations is quite widespread across students in all three countries, but that there exists substantial within-country variation as well as between-country variation in students’ reliance on standard vs. situationally appropriate strategies. In addition, we found correlations between equation-solving accuracy and students’ flexibility in all three countries but to different degrees. Conclusions Although it is increasingly recognized as an important construct of interest, there are many aspects of mathematical flexibility that are not well-understood. Particularly lacking in the literature on flexibility are studies that explore similarities and differences in students’ repertoire of strategies for solving algebra problems across countries with different educational systems and curricula. This study yielded important insights about flexibility and can push the field to explore the extent that within- and between-country differences in flexibility can be linked to differences in countries’ educational systems, teaching practices, and/or cultural norms around mathematics teaching and learning.


2022 ◽  
Vol 9 (1) ◽  
Author(s):  
Chih-Jung Ku ◽  
Ying-Shao Hsu ◽  
Mei-Chen Chang ◽  
Kuen-Yi Lin

Abstract Background Research on teaching and learning for science, technology, engineering, and mathematics (STEM) subjects has increased, and has demonstrated the importance of integrating interdisciplinary knowledge and skills. Our research model was based on the theory of planned behavior (TPB) and the data were analyzed by partial least squares-structural equation modeling. The present study aims to identify factors that play an important role in students’ ability to integrate STEM knowledge and skills. Results Data were collected from participants who had won awards in local contests and represented their regions in a national technology competition. The reliability and validity of our instrument, the Students’ STEM Integration Scale, were verified. The findings demonstrated that students’ intentions to integrate STEM knowledge and skills to solve complex problems can be predicted by their attitude and perceived behavioral control. Conclusions This work highlights factors which are associated with students’ intentions to integrate interdisciplinary knowledge and skills, and serves as a reference for research on the gap between intentions and actual behavior. The findings could help teachers and instructors design STEM-based activities to enhance students’ attitudes, perceived behavioral control, and intentions, to improve their ability to integrate STEM knowledge and skills.


2022 ◽  
Vol 9 (1) ◽  
Author(s):  
Fatma Kayan-Fadlelmula ◽  
Abdellatif Sellami ◽  
Nada Abdelkader ◽  
Salman Umer

AbstractAbundant research conducted in many countries has underlined the critical role of Science, Technology, Engineering, and Mathematics (STEM) in developing human capital in fields important to a nation’s global competiveness and prosperity. In the Gulf Cooperation Council (GCC) States, recent long-term policy plans emphasize the ever-increasing need of transition to a knowledge-based economy and preparing highly qualified nationals with credentials in STEM fields to meet the current and future needs of the labor market. Yet, despite multiple educational reforms and substantial resources, national and international indicators of student performance still demonstrate insignificant improvement in GCC students’ achievement in STEM subjects. Demonstrably, the GCC youth still lack interest in STEM careers and represent low enrollment rates in STEM fields. This paper presents the results of a systematic review conducted on STEM education research in GCC countries. The review seeks to contribute to the body of the existing STEM literature, explore the factors influencing student participation in STEM, and identify the gaps in STEM education research in those countries.


2022 ◽  
Vol 9 (1) ◽  
Author(s):  
Melvin Vooren ◽  
Carla Haelermans ◽  
Wim Groot ◽  
Henriette Maassen van den Brink

Abstract Background In this paper, we investigate the predictors for enrollment and success in Science, Technology, Engineering, and Mathematics (STEM) programs in higher education. We develop a sequential logit model in which students enroll in STEM education, may drop out from STEM higher education, or continue studying until they graduate in an STEM field. We use rich Dutch register data on student characteristics and high school exam grades to explain the differences in enrollment, success, and dropout rates. Results We find that females are less likely to enroll in STEM-related fields, while students with higher high school mathematics grades are more likely to enroll in STEM. Female students have lower first-year dropout rates at university of applied sciences STEM programs. With respect to study success, we find that conditional on enrollment in STEM, women are less likely to graduate than men within the nominal duration or the nominal duration plus one additional year. However, female students do perform equally well as male students in terms of graduation within 10 years. Conclusions We conclude that STEM programs are less popular among female students and that female students are less likely to graduate on time. However, females perform equally well in STEM higher education in the long run. For this reason, policy should be geared at increasing study success in terms of nominal graduation rates among female STEM students.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Jessica R. Gladstone ◽  
Andrei Cimpian

AbstractIs exposing students to role models an effective tool for diversifying science, technology, engineering, and mathematics (STEM)? So far, the evidence for this claim is mixed. Here, we set out to identify systematic sources of variability in STEM role models’ effects on student motivation: If we determine which role models are effective for which students, we will be in a better position to maximize role models’ impact as a tool for diversifying STEM. A systematic narrative review of the literature (55 articles) investigated the effects of role models on students’ STEM motivation as a function of several key features of the role models (their perceived competence, their perceived similarity to students, and the perceived attainability of their success) and the students (their gender, race/ethnicity, age, and identification with STEM). We conclude with four concrete recommendations for ensuring that STEM role models are motivating for students of all backgrounds and demographics—an important step toward diversifying STEM.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Yeping Li

AbstractThe International Journal of STEM Education went through seven publication cycle years from August 2014 to July 2021. The journal’s performance has consistently reflected the rapid development in STEM education research internationally. In this editorial, I share the journal’s performance since August 2020 and discuss possible future developments.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Bobby Habig ◽  
Preeti Gupta

Abstract Background Two critical challenges in science education are how to engage students in the practices of science and how to develop and sustain interest. The goal of this study was to examine the extent to which high school youth, the majority of whom are members of racial and ethnic groups historically underrepresented in STEM, learn the skills and practices of science and in turn develop interest in conducting scientific research as part of their career pursuits. To accomplish this goal, we applied Hidi and Renninger’s well-tested theoretical framework for studying interest development in the context of a museum-based, informal science education (ISE) program. We used a mixed methods approach, incorporating both survey and interview data, to address three research questions: (1) As youth engage in authentic science research, do they develop perceived competence in mastering the skills and practices of science? (2) Do participants increase, maintain, or decrease interest in science research as a result of this experience? (3) How does participation in scientific practices manifest in non-program contexts? Results Our study yielded three main results. First, we found that participants developed competence in mastering several of the skills and practices of science. Strikingly, there was significant improvement in self-reported level of competency for 15 specific research skills. Second, we found that participants maintained their interest in scientific research over time. Our post-survey results revealed that one hundred percent of students were either excited about or expressed deep interest in scientific research. Based on a Phases of Interest Development Rubric developed for this study, most participants exhibited emerging individual interest. Finally, participants exhibited significant increases in the frequency in which they engaged in scientific practices outside of the program. Conclusions Our findings suggest that participation in authentic research in an ISE context affords youth critical opportunities for gaining mastery of several of the skills and practices of science, which in turn reinforces, and in some cases increases participants’ interest in scientific research beyond the span of the program.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Sheri L. Clark ◽  
Christina Dyar ◽  
Elizabeth M. Inman ◽  
Nina Maung ◽  
Bonita London

Abstract Background Innovation in STEM (science, technology, engineering, and math) fields in the U.S. is threatened by a lack of diversity. Social identity threat research finds messages in the academic environment devalue women and underrepresented groups in STEM, creating a chilly and hostile environment. Research has focused on the mechanisms that contribute to STEM engagement and interest at the K-12 and undergraduate level, but the mechanisms that predict sustained engagement at the graduate level have not been studied. Results In a longitudinal study of doctoral students in STEM disciplines, we demonstrate that students’ beliefs that their STEM colleagues believe intelligence is a fixed (vs. malleable) trait undermine women’s engagement in STEM. Specifically, perceiving a fixed ability environment predicts greater perceptions of sexism, which erode women’s self-efficacy and sense of belongingness and lead women to consider dropping out of their STEM career. Conclusion These findings identify one potential pathway by which women leave their STEM fields, perpetuating gender disparities in STEM.


Sign in / Sign up

Export Citation Format

Share Document