Analysis of DHE-derived oxidation products by HPLC in the assessment of superoxide production and NADPH oxidase activity in vascular systems

2007 ◽  
Vol 292 (1) ◽  
pp. C413-C422 ◽  
Author(s):  
Denise C. Fernandes ◽  
João Wosniak ◽  
Luciana A. Pescatore ◽  
Maria A. Bertoline ◽  
Marcel Liberman ◽  
...  

Dihydroethidium (DHE) is a widely used sensitive superoxide (O2•−) probe. However, DHE oxidation yields at least two fluorescent products, 2-hydroxyethidium (EOH), known to be more specific for O2•−, and the less-specific product ethidium. We validated HPLC methods to allow quantification of DHE products in usual vascular experimental situations. Studies in vitro showed that xanthine/xanthine oxidase, and to a lesser degree peroxynitrite/carbon dioxide system led to EOH and ethidium formation. Peroxidase/H2O2 but not H2O2 alone yielded ethidium as the main product. In vascular smooth muscle cells incubated with ANG II (100 nM, 4 h), we showed a 60% increase in EOH/DHE ratio, prevented by PEG-SOD or SOD1 overexpression. We further validated a novel DHE-based NADPH oxidase assay in vascular smooth muscle cell membrane fractions, showing that EOH was uniquely increased after ANG II. This assay was also adapted to a fluorescence microplate reader, providing results in line with HPLC results. In injured artery slices, shown to exhibit increased DHE-derived fluorescence at microscopy, there was ∼1.5- to 2-fold increase in EOH/DHE and ethidium/DHE ratios after injury, and PEG-SOD inhibited only EOH formation. We found that the amount of ethidium product and EOH/ethidium ratios are influenced by factors such as cell density and ambient light. In addition, we indirectly disclosed potential roles of heme groups and peroxidase activity in ethidium generation. Thus HPLC analysis of DHE-derived oxidation products can improve assessment of O2•− production or NADPH oxidase activity in many vascular experimental studies.

2010 ◽  
Vol 298 (2) ◽  
pp. F401-F407 ◽  
Author(s):  
Md. Abdul Hye Khan ◽  
Mohammed Toriqul Islam ◽  
Alexander Castillo ◽  
Dewan Syed Abdul Majid

To examine the functional interaction between superoxide dismutase (SOD) and NADPH oxidase activity, we assessed renal responses to acute intra-arterial infusion of ANG II (0.5 ng·kg−1·min−1) before and during administration of a SOD inhibitor, diethyldithiocarbamate (DETC, 0.5 mg·kg−1·min−1), in enalaprilat-pretreated (33 μg·kg−1·min−1) rats ( n = 11). Total (RBF) and regional (cortical, CBF; medullary; MBF) renal blood flows were determined by Transonic and laser-Doppler flowmetry, respectively. Renal cortical and medullary tissue NADPH oxidase activity in vitro was determined using the lucigenin-chemiluminescence method. DETC treatment alone resulted in decreases in RBF, CBF, MBF, glomerular filtration rate (GFR), urine flow (V), and sodium excretion (UNaV) as reported previously. Before DETC, ANG II infusion decreased RBF (−18 ± 3%), CBF (−16 ± 3%), MBF [−5 ± 6%; P = not significant (NS)], GFR (−31 ± 4%), V (−34 ± 2%), and UNaV (−53 ± 3%). During DETC infusion, ANG II also caused similar reductions in RBF (−20 ± 4%), CBF (−19 ± 3%), MBF (−2 ± 2; P = NS), and in GFR (−22 ± 7%), whereas renal excretory responses (V; −12 ± 2%; UNaV; −24 ± 4%) were significantly attenuated compared with those before DETC. In in vitro experiments, ANG II (100 μM) enhanced NADPH oxidase activity both in cortical [13,194 ± 1,651 vs. 20,914 ± 2,769 relative light units (RLU)/mg protein] and in medullary (21,296 ± 2,244 vs. 30,597 ± 4,250 RLU/mg protein) tissue. Application of DETC (1 mM) reduced the basal levels and prevented ANG II-induced increases in NADPH oxidase activity in both tissues. These results demonstrate that renal excretory responses to acute ANG II administration are attenuated during SOD inhibition, which seems related to a downregulation of NADPH oxidase in the deficient condition of SOD activity.


2005 ◽  
Vol 65 (2) ◽  
pp. 495-504 ◽  
Author(s):  
S ELLMARK ◽  
G DUSTING ◽  
M NGTANGFUI ◽  
N GUZZOPERNELL ◽  
G DRUMMOND

2009 ◽  
Vol 23 (S1) ◽  
Author(s):  
Jennifer Rivera ◽  
Grant Drummond ◽  
Richard Strugnell ◽  
Christopher Sobey ◽  
Anna Walduck

2005 ◽  
Vol 108 (6) ◽  
pp. 523-530 ◽  
Author(s):  
Giovanna CASTOLDI ◽  
Serena REDAELLI ◽  
Willy M. M. van de GREEF ◽  
Cira R. T. di GIOIA ◽  
Giuseppe BUSCA ◽  
...  

Ang II (angiotensin II) has multiple effects on vascular smooth muscle cells through the modulation of different classes of genes. Using the mRNA differential-display method to investigate gene expression in rat aortic smooth muscle cells in culture in response to 3 h of Ang II stimulation, we observed that Ang II down-regulated the expression of a member of the family of transmembrane receptors for Wnt proteins that was identified as Fzd2 [Fzd (frizzled)-2 receptor]. Fzds are a class of highly conserved genes playing a fundamental role in the developmental processes. In vitro, time course experiments demonstrated that Ang II induced a significant increase (P<0.05) in Fzd2 expression after 30 min, whereas it caused a significant decrease (P<0.05) in Fzd2 expression at 3 h. A similar rapid up-regulation after Ang II stimulation for 30 min was evident for TGFβ1 (transforming growth factor β1; P<0.05). To investigate whether Ang II also modulated Fzd2 expression in vivo, exogenous Ang II was administered to Sprague–Dawley rats (200 ng·kg−1 of body weight·min−1; subcutaneously) for 1 and 4 weeks. Control rats received normal saline. After treatment, systolic blood pressure was significantly higher (P<0.01), whereas plasma renin activity was suppressed (P<0.01) in Ang II- compared with the saline-treated rats. Ang II administration for 1 week did not modify Fzd2 expression in aorta of Ang II-treated rats, whereas Ang II administration for 4 weeks increased Fzd2 mRNA expression (P<0.05) in the tunica media of the aorta, resulting in a positive immunostaining for fibronectin at this time point. In conclusion, our data demonstrate that Ang II modulates Fzd2 expression in aortic smooth muscle cells both in vitro and in vivo.


Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Dongmei Liu ◽  
Lie Gao ◽  
Kurtis G Cornish ◽  
Irving H Zucker

In a previous study, we showed that Ang II type I receptor (AT1R) expression increased in the rostral ventrolateral medulla (RVLM) of chronic heart failure (CHF) rabbits and in normal rabbits infused with intracerebroventricular (ICV) Angiotensin II (AngII). The present study investigated if oxidative stress plays a role in Ang II induced AT1R upregulation and its relationship to the transcription factor activator protein 1 (AP1) in CHF rabbits and in the CATHa neuronal cell line. In neuronal cell cultures, Ang II significantly increased AT1R mRNA by 153 ± 22%, P <0.01; c-Jun mRNA by 90 ± 10%, P < 0.01; NADPH oxidase activity by 126 ± 43%, P < 0.01 versus untreated cells; Tempol, Apocynin and the AP 1 inhibitor Tanshinone II reversed the increased AT1R, c-Jun expression and NADPH oxidase activity induced by AngII. We examined the effect of ICV Tempol on expression of these proteins in the RVLM of CHF rabbits. Compared to untreated CHF rabbits Tempol significantly decreased AT1R protein expression (0.88±0.16 vs. 1.6±0.29, P <0.05), phosphorylated Jnk protein (0.10±0.02 vs. 0.31±0.10, P <0.05), and phosphorylated c-Jun (0.02±0.001 vs. 0.14±0.05, P <0.05). These data suggest that Ang II induces AT1R upregulation at the transcriptional level by activation of oxidative stress and AP1 in both cultured cells and in intact brain. Antioxidant agents may be beneficial in CHF by decreasing AT1R expression through the Jnk and AP1 pathway.


2008 ◽  
Vol 295 (1) ◽  
pp. E103-E109 ◽  
Author(s):  
Adam Whaley-Connell ◽  
Javad Habibi ◽  
Shawna A. Cooper ◽  
Vincent G. DeMarco ◽  
Melvin R. Hayden ◽  
...  

Angiotensin II (Ang II) stimulation of the Ang type 1 receptor (AT1R) facilitates myocardial remodeling through NADPH oxidase-mediated generation of oxidative stress. Components of the renin-angiotensin system constitute an autocrine/paracrine unit in the myocardium, including renin, which is the rate-limiting step in the generation of Ang II. This investigation sought to determine whether cardiac oxidative stress and cellular remodeling could be attenuated by in vivo renin inhibition and/or AT1R blockade in a rodent model of chronically elevated tissue Ang II levels, the transgenic (mRen2)27 rat (Ren2). The Ren2 overexpresses the mouse renin transgene with resultant hypertension, insulin resistance, and cardiovascular damage. Young (6- to 7-wk-old) heterozygous (+/−) male Ren2 and age-matched Sprague-Dawley rats were treated with the renin inhibitor aliskiren, which has high preferential affinity for human and mouse renin, an AT1R blocker, irbesartan, or placebo for 3 wk. Myocardial NADPH oxidase activity and immunostaining for NADPH oxidase subunits and 3-nitrotyrosine were evaluated and remodeling changes assessed by light and transmission electron microscopy. Blood pressure, myocardial NADPH oxidase activity and subunit immunostaining, 3-nitrotyrosine, perivascular fibrosis, mitochondrial content, and markers of activity were significantly increased in Ren2 compared with SD littermates. Both renin inhibition and blockade of the AT1R significantly attenuated cardiac functional and structural alterations, although irbesartan treatment resulted in greater reductions of both blood pressure and markers of oxidative stress. Collectively, these data suggest that both reduce changes driven, in part, by Ang II-mediated increases in NADPH oxidase and, in part, increases in blood pressure.


Endocrinology ◽  
2008 ◽  
Vol 149 (11) ◽  
pp. 5643-5653 ◽  
Author(s):  
Javad Habibi ◽  
Adam Whaley-Connell ◽  
Melvin R. Hayden ◽  
Vincent G. DeMarco ◽  
Rebecca Schneider ◽  
...  

Emerging evidence indicates that pancreatic tissue expresses all components of the renin-angiotensin system. However, the functional role is not well understood. This investigation examined renin inhibition on pancreas structure/function in the transgenic Ren2 rat harboring the mouse renin gene, a model of tissue renin overexpression. Renin is the rate-limiting step in the generation of angiotensin II (Ang II), which stimulates the generation of reactive oxygen species in a variety of tissues. Overexpression of renin in Ren2 rats results in hypertension, insulin resistance, and cardiovascular and renal damage. Young (6–7 wk old) insulin-resistant male Ren2 and age-matched insulin sensitive Sprague Dawley rats were treated with the renin inhibitor, aliskiren (50 mg/kg·d by ip injection), or placebo for 21 d. At 21 d, the Ren2 demonstrated insulin resistance with increased islet insulin, Ang II, and reduced total insulin receptor substrate (IRS)-1, IRS-2, and Akt immunostaining. There was increased islet nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity and subunits (p47phox and Rac1) as well as increased nitrotyrosine immunostaining (each P &lt; 0.05). These functional abnormalities were associated with a disordered islet architecture; increased islet-exocrine interface, pericapillary fibrosis, and structurally abnormal mitochondria and content in endocrine and exocrine pancreas. In vivo treatment with aliskiren normalized systemic insulin resistance and islet insulin, Ang II, NADPH oxidase activity/subunits, and nitrotyrosine and improved total IRS-1 and Akt phosphorylation (each P &lt; 0.05) as well as islet/exocrine structural abnormalities. Collectively, these data suggest that pancreatic functional/structural changes are driven, in part, by tissue renin-angiotensin system-mediated increases in NADPH oxidase and reactive oxygen species generation, abnormalities attenuated with direct renin inhibition.


2005 ◽  
Vol 83 (1) ◽  
pp. 91-97 ◽  
Author(s):  
Rhian M Touyz ◽  
Guoying Yao ◽  
Ernesto L Schiffrin

Angiotensin II (Ang II) regulates vascular smooth muscle cell (VSMC) function by activating signaling cascades that promote vasoconstriction, growth, and inflammation. Subcellular mechanisms coordinating these processes are unclear. In the present study, we questioned the role of the actin cytoskeleton in Ang II mediated signaling through mitogen-activated protein (MAP) kinases and reactive oxygen species (ROS) in VSMCs. Human VSMCs were studied. Cells were exposed to Ang II (10–7 mol/L) in the absence and presence of cytochalasin B (10–6 mol/L, 60 min), which disrupts the actin cytoskeleton. Phosphorylation of p38MAP kinase, JNK, and ERK1/2 was assessed by immuno blotting. ROS generation was measured using the fluoroprobe chloromethyl-2',7'-dichlorodihydrofluorescein diacetate (4 µmol/L). Interaction between the cytoskeleton and NADPH oxidase was determined by evaluating the presence of p47phox in the Triton X-100 insoluble membrane fraction. Ang II significantly increased phosphorylation of p38MAP kinase, JNK, and ERK1/2 (two- to threefold above control, p < 0.05). Cytochalasin B pretreatment attenuated p38MAP kinase and JNK effects (p < 0.05) without altering ERK1/2 phosphorylation. ROS formation, which was increased in Ang II stimulated cells, was significantly reduced by cytochalasin B (p < 0.01). p47phox, critically involved in NADPH oxidase activation, colocalized with the actin cytoskeleton in Ang II stimulated cells. Our data demonstrate that Ang II mediated ROS formation and activation of p38MAP kinase and JNK, but not ERK1/2, involves the actin cytoskeleton in VSMCs. In addition, Ang II promotes interaction between actin and p47phox. These data indicate that the cytoskeleton is involved in differential MAP kinase signaling and ROS generation by Ang II in VSMCs. Together, these studies suggest that the cytoskeleton may be a central point of crosstalk in growth- and redox-signaling pathways by Ang II, which may be important in the regulation of VSMC function.Key words: superoxide, NADPH oxidase, p38MAP kinase, JNK, ERK1/2.


Sign in / Sign up

Export Citation Format

Share Document