scholarly journals Activation of TRPV1 channels leads to stimulation of NKCC1 cotransport in the lens

2018 ◽  
Vol 315 (6) ◽  
pp. C793-C802 ◽  
Author(s):  
Mohammad Shahidullah ◽  
Amritlal Mandal ◽  
Nicholas A. Delamere

Lens ion homeostasis is crucial in maintaining water content and, in turn, refractive index and transparency of the multicellular syncytium-like structure. New information is emerging on the regulation of ion transport in the lens by mechanisms that rely on transient receptor potential vanilloid (TRPV) ion channels. We found recently that TRPV1 activation leads to Ca2+/PKC-dependent ERK1/2 signaling. Here, we show that the TRPV1 agonist capsaicin (100 nM) and hyperosmotic solution (350 vs. 300 mosM) each caused an increase of bumetanide-inhibitable Rb uptake by intact porcine lenses and Na-K-2Cl cotransporter 1 (NKCC1) phosphorylation in the lens epithelium. The TRPV1 antagonist A889425 (1 µM) abolished the increases of Rb uptake and NKCC1 phosphorylation in response to hyperosmotic solution. Exposing lenses to hyperosmotic solution in the presence of MEK/ERK inhibitor U0126 (10 µM) or the with-no-lysine kinase (WNK) inhibitor WNK463 (1 µM) also prevented NKCC1 phosphorylation and the Rb uptake responses to hyperosmotic solution. WNK463 did not prevent the increase in ERK1/2 phosphorylation that occurs in response to capsaicin or hyperosmotic solution, suggesting that ERK1/2 activation occurs before WNK activation in the sequence of signaling events. Taken together, the evidence indicates that activation of TRPV1 is a critical early step in a signaling mechanism that responds to a hyperosmotic stimulus, possibly lens shrinkage. By activating ERK1/2 and WNK, TRPV1 activation leads to NKCC1 phosphorylation and stimulation of NKCC1-mediated ion transport.

2021 ◽  
Vol 22 (7) ◽  
pp. 3712
Author(s):  
Eva Uchytilova ◽  
Diana Spicarova ◽  
Jiri Palecek

Transient receptor potential vanilloid 1 (TRPV1) channels contribute to the development of several chronic pain states and represent a possible therapeutic target in many painful disease treatment. Proinflammatory mediator bradykinin (BK) sensitizes TRPV1, whereas noxious peripheral stimulation increases BK level in the spinal cord. Here, we investigated the involvement of spinal TRPV1 in thermal and mechanical hypersensitivity, evoked by intrathecal (i.t.) administration of BK and an endogenous agonist of TRPV1, N-oleoyldopamine (OLDA), using behavioral tests and i.t. catheter implantation, and administration of BK-induced transient thermal and mechanical hyperalgesia and mechanical allodynia. All these hypersensitive states were enhanced by co-administration of a low dose of OLDA (0.42 µg i.t.), which was ineffective only under the control conditions. Intrathecal pretreatment with TRPV1 selective antagonist SB366791 prevented hypersensitivity induced by i.t. co-administration of BK and OLDA. Our results demonstrate that both thermal and mechanical hypersensitivity evoked by co-administration of BK and OLDA is mediated by the activation of spinal TRPV1 channels.


2014 ◽  
Vol 27 (2) ◽  
pp. 97-105 ◽  
Author(s):  
Daniele C. Aguiar ◽  
Ana F. Almeida-Santos ◽  
Fabricio A. Moreira ◽  
Francisco S. Guimarães

ObjectivesThe transient receptor potential vanilloid type-1 channel (TRPV1) is expressed in the midbrain periaqueductal grey (PAG), a region of the brain related to aversive responses. TRPV1 antagonism in the dorsolateral PAG (dlPAG) induces anxiolytic-like effects in models based on conflict situations. No study, however, has investigated whether these receptors could contribute to fear responses to proximal threat. Thus, we tested the hypothesis that TRPV1 in the PAG could mediate fear response in rats exposed to a predator.MethodsWe verified whether exposure to a live cat (a natural predator) would activate TRPV1-expressing neurons in the PAG. Double-staining immunohistochemistry was used as a technique to detect c-Fos, a marker of neuronal activation, and TRPV1 expression. We also investigated whether intra-dlPAG injections of the TRPV1 antagonist, capsazepine (CPZ), would attenuate the behavioural consequences of predator exposure.ResultsExposure to a cat increased c-Fos expression in TRPV1-positive neurons, mainly in the dorsal columns of the PAG, suggesting that TRPV1-expressing neurons are activated by threatening stimuli. Accordingly, local injection of CPZ inhibited the fear responses.ConclusionThese data support the hypothesis that TRPV1 channels mediate fear reactions in the dlPAG. This may have an implication for the development of TRPV1-antagonists as potential drugs for the treatment of certain psychiatric disorders.


2021 ◽  
Vol 22 (7) ◽  
pp. 3360
Author(s):  
Mee-Ra Rhyu ◽  
Yiseul Kim ◽  
Vijay Lyall

In addition to the sense of taste and olfaction, chemesthesis, the sensation of irritation, pungency, cooling, warmth, or burning elicited by spices and herbs, plays a central role in food consumption. Many plant-derived molecules demonstrate their chemesthetic properties via the opening of transient receptor potential ankyrin 1 (TRPA1) and transient receptor potential vanilloid 1 (TRPV1) channels. TRPA1 and TRPV1 are structurally related thermosensitive cation channels and are often co-expressed in sensory nerve endings. TRPA1 and TRPV1 can also indirectly influence some, but not all, primary taste qualities via the release of substance P and calcitonin gene-related peptide (CGRP) from trigeminal neurons and their subsequent effects on CGRP receptor expressed in Type III taste receptor cells. Here, we will review the effect of some chemesthetic agonists of TRPA1 and TRPV1 and their influence on bitter, sour, and salt taste qualities.


2013 ◽  
Vol 305 (9) ◽  
pp. G638-G648 ◽  
Author(s):  
Michael E. Kiyatkin ◽  
Bin Feng ◽  
Erica S. Schwartz ◽  
G. F. Gebhart

The ligand-gated channels transient receptor potential vanilloid 1 (TRPV1) and P2X3 have been reported to facilitate colorectal afferent neuron sensitization, thus contributing to organ hypersensitivity and pain. In the present study, we hypothesized that TRPV1 and P2X3 cooperate to modulate colorectal nociception and afferent sensitivity. To test this hypothesis, we employed TRPV1-P2X3 double knockout (TPDKO) mice and channel-selective pharmacological antagonists and evaluated combined channel contributions to behavioral responses to colorectal distension (CRD) and afferent fiber responses to colorectal stretch. Baseline responses to CRD were unexpectedly greater in TPDKO compared with control mice, but zymosan-produced CRD hypersensitivity was absent in TPDKO mice. Relative to control mice, proportions of mechanosensitive and -insensitive pelvic nerve afferent classes were not different in TPDKO mice. Responses of mucosal and serosal class afferents to mechanical probing were unaffected, whereas responses of muscular (but not muscular/mucosal) afferents to stretch were significantly attenuated in TPDKO mice; sensitization of both muscular and muscular/mucosal afferents by inflammatory soup was also significantly attenuated. In pharmacological studies, the TRPV1 antagonist A889425 and P2X3 antagonist TNP-ATP, alone and in combination, applied onto stretch-sensitive afferent endings attenuated responses to stretch; combined antagonism produced greater attenuation. In the aggregate, these observations suggest that 1) genetic manipulation of TRPV1 and P2X3 leads to reduction in colorectal mechanosensation peripherally and compensatory changes and/or disinhibition of other channels centrally, 2) combined pharmacological antagonism produces more robust attenuation of mechanosensation peripherally than does antagonism of either channel alone, and 3) the relative importance of these channels appears to be enhanced in colorectal hypersensitivity.


2018 ◽  
Vol 115 (7) ◽  
pp. E1657-E1666 ◽  
Author(s):  
Miguel Ortíz-Rentería ◽  
Rebeca Juárez-Contreras ◽  
Ricardo González-Ramírez ◽  
León D. Islas ◽  
Félix Sierra-Ramírez ◽  
...  

The Transient Receptor Potential Vanilloid 1 (TRPV1) ion channel is expressed in nociceptors where, when activated by chemical or thermal stimuli, it functions as an important transducer of painful and itch-related stimuli. Although the interaction of TRPV1 with proteins that regulate its function has been previously explored, their modulation by chaperones has not been elucidated, as is the case for other mammalian TRP channels. Here we show that TRPV1 physically interacts with the Sigma 1 Receptor (Sig-1R), a chaperone that binds progesterone, an antagonist of Sig-1R and an important neurosteroid associated to the modulation of pain. Antagonism of Sig-1R by progesterone results in the down-regulation of TRPV1 expression in the plasma membrane of sensory neurons and, consequently, a decrease in capsaicin-induced nociceptive responses. This is observed both in males treated with a synthetic antagonist of Sig-1R and in pregnant females where progesterone levels are elevated. This constitutes a previously undescribed mechanism by which TRPV1-dependent nociception and pain can be regulated.


2012 ◽  
Vol 116 (4) ◽  
pp. 903-917 ◽  
Author(s):  
Lenka Marsakova ◽  
Filip Touska ◽  
Jan Krusek ◽  
Viktorie Vlachova

Background The recent discovery that camphor activates and strongly desensitizes the capsaicin-sensitive and noxious heat-sensitive channel transient receptor potential vanilloid subfamily member 1 (TRPV1) has provided new insights and opened up new research paths toward understanding why this naturally occurring monoterpene is widely used in human medicine for its local counter-irritant, antipruritic, and anesthetic properties. However, the molecular basis for camphor sensitivity remains mostly unknown. The authors attempt to explore the nature of the activation pathways evoked by camphor and narrow down a putative interaction site at TRPV1. Methods The authors transiently expressed wild-type or specifically mutated recombinant TRPV1 channels in human embryonic kidney cells HEK293T and recorded cation currents with the whole cell, patch clamp technique. To monitor changes in the spatial distribution of phosphatidylinositol 4,5-bisphosphate, they used fluorescence resonance energy transfer measurements from cells transfected with the fluorescent protein-tagged pleckstrin homology domains of phospholipase C. Results The results revealed that camphor modulates TRPV1 channel through the outer pore helix domain by affecting its overall gating equilibrium. In addition, camphor, which generally is known to decrease the fluidity of cell plasma membranes, may also regulate the activity of TRPV1 by inducing changes in the spatial distribution of phosphatidylinositol-4,5-bisphosphate on the inner leaflet of the plasma membrane. Conclusions The findings of this study provide novel insights into the structural basis for the modulation of TRPV1 channel by camphor and may provide an explanation for the mechanism by which camphor modulates thermal sensation in vivo.


Sign in / Sign up

Export Citation Format

Share Document