Ultrastructure of Amphiuma distal nephron: evidence for cellular heterogeneity

1989 ◽  
Vol 256 (4) ◽  
pp. C849-C857 ◽  
Author(s):  
D. Biemesderfer ◽  
B. Stanton ◽  
J. B. Wade ◽  
M. Kashgarian ◽  
G. Giebisch

To obtain more information on the ultrastructure of the distal nephron of the salamander, Amphiuma, we conducted freeze-fracture electron microscopy and morphometric experiments. In the early distal tubule, the organization of the tight junction is variable, containing from one to two strands in the proximal region and four strands in distal regions. The length density of the tight junction in this segment varies from greater than 60 m/cm2 of apical membrane surface to less than 10/cm2 of apical membrane surface. These observations agree with a previous study demonstrating that the junction of this segment exhibits considerable axial heterogeneity. The junctions of the late distal tubule and collecting tubule are more complex. In the late distal tubule, the tight junction is composed of 6-8 strands, whereas the tight junction of the collecting tubule is composed of 8-12 strands. The collecting tubule contains principal cells and two types of intercalated cells: alpha and beta. The alpha-cells contain a high density of rod-shaped particles in the apical plasma membrane and in membranes of apical cytoplasmic vesicles. The beta-cells contain rod-shaped particles only in the basolateral membrane. In principal cells, we observed a novel organization of intramembranous particles within the apical plasma membrane. A model describing the relationship of the two types of intramembranous particles within the membrane is presented. This study demonstrates that the amphibian and mammalian distal nephron share many morphological characteristics including cellular and axial heterogeneity.

2008 ◽  
Vol 294 (1) ◽  
pp. F38-F46 ◽  
Author(s):  
Oleh Pochynyuk ◽  
Vladislav Bugaj ◽  
Alain Vandewalle ◽  
James D. Stockand

Activity of the epithelial sodium channel (ENaC) is limiting for Na+ reabsorption at the distal nephron. Phosphoinositides, such as phosphatidylinositol 4,5-biphosphate [PI(4,5)P2] modulate the activity of this channel. Activation of purinergic receptors triggers multiple events, including activation of PKC and PLC, with the latter depleting plasma membrane PI(4,5)P2. Here, we investigate regulation of ENaC in renal principal cells by purinergic receptors via PLC and PI(4,5)P2. Purinergic signaling rapidly decreases ENaC open probability and apical membrane PI(4,5)P2 levels with similar time courses. Moreover, inhibiting purinergic signaling with suramin rescues ENaC activity. The PLC inhibitor U73122, but not U73343, its inactive analog, recapitulates the action of suramin. In contrast, modulating PKC signaling failed to affect purinergic regulation of ENaC. Unexpectedly, inhibiting either purinergic receptors or PLC in resting cells dramatically increased ENaC activity above basal levels, indicating tonic activation of purinergic signaling in these polarized renal epithelial cells. Increased ENaC activity was associated with elevation of apical membrane PI(4,5)P2 levels. Subsequent treatment with ATP in the presence of inhibited purinergic signaling failed to decrease ENaC activity and apical membrane PI(4,5)P2 levels. Dwell-time analysis reveals that depletion of PI(4,5)P2 forces ENaC toward a closed state. In contrast, increasing PI(4,5)P2 levels above basal values locks the channel in an open state interrupted by brief closings. Thus our results suggest that purinergic control of apical membrane PI(4,5)P2 levels is a major regulator of ENaC activity in renal epithelial cells.


1988 ◽  
Vol 255 (3) ◽  
pp. F375-F382 ◽  
Author(s):  
J. S. Handler

This review focuses on events at the apical plasma membrane of toad urinary bladder and mammalian collecting duct as their permeability to water changes in response to antidiuretic hormone (ADH) and to its withdrawal. The major marker of the permeability change is observed in freeze-fracture electron microscopy of the apical plasma membrane and consists of a dramatic increase in membrane particle aggregates and, in toad bladder but not in collecting duct, in fused vesicles (aggrephores) that contain particle aggregates in their limiting membranes. Withdrawal of ADH is accompanied by endocytosis at the apical membrane, reflecting retrieval of water-permeable, particle aggregate-containing membrane. Covalent labeling of the external surface of the apical membrane of toad bladder identifies specific proteins that are present in the apical membrane only during the response to ADH. Proteins of the same molecular weights are also present in the retrieved membrane when ADH is withdrawn. Several controversial areas are considered, including the extent of cell swelling as water flows across the epithelium from dilute apical solution to isotonic basal solution, whether only principal cells or principal cells and intercalated cells participate in the water permeability response of the collecting duct, the role of the cytoskeleton in the water permeability response, and the proposed second water permeability barrier that is affected by ADH, but not by adenosine 3',5'-cyclic monophosphate.


1984 ◽  
Vol 247 (3) ◽  
pp. C204-C216 ◽  
Author(s):  
B. Stanton ◽  
D. Biemesderfer ◽  
D. Stetson ◽  
M. Kashgarian ◽  
G. Giebisch

The cellular ultrastructure of the renal distal nephron of the salamander, Amphiuma means, was examined by electron-microscopic and stereological techniques before and after exposure to potassium in the ambient environment. The distal nephron of Amphiuma is composed of three ultrastructurally distinct segments: early distal (or diluting segment), late distal, and collecting tubule. The early distal tubule structurally resembles the mammalian thick ascending limb of Henle's loop. Large renin-like granules are present in the smooth muscle cells of the afferent arteriole in the vicinity of the early distal tubule, suggesting the presence of a rudimentary juxtaglomerular apparatus. Late distal tubules are composed of one large cell type characterized by extensive basal membrane invaginations, often extending to the luminal membrane. Collecting tubules contain principal and intercalated cells that are ultrastructurally similar to cells of the mammalian cortical collecting tubule. Exposure to potassium had no effect on the ultrastructure of early distal cells but led to a sharp increase in the basolateral membrane surface density of principal cells in the collecting tubule (1.17 +/- 0.08-1.63 +/- 0.13 micron2/micron3). Potassium adaptation leads to a similar structural response in the mammalian collecting tubule. Since Amphiuma collecting tubules can be isolated and perfused in vitro and impaled with ion- and voltage-sensitive microelectrodes, the observed structural adaptation suggests that the collecting tubule may be a useful preparation to study the cellular mechanisms of potassium adaptation.


1996 ◽  
Vol 109 (6) ◽  
pp. 1215-1227 ◽  
Author(s):  
I. Hemery ◽  
A.M. Durand-Schneider ◽  
G. Feldmann ◽  
J.P. Vaerman ◽  
M. Maurice

In hepatocytes, newly synthesized apical plasma membrane proteins are first delivered to the basolateral surface and are supposed to reach the apical surface by transcytosis. The transcytotic pathway of apical membrane proteins and its relationship with other endosomal pathways has not been demonstrated morphologically. We compared the intracellular route of an apical plasma membrane protein, B10, with that of polymeric IgA (pIgA), which is transcytosed, transferrin (Tf) which is recycled, and asialoorosomucoid (ASOR) which is delivered to lysosomes. Ligands and anti-B10 monoclonal IgG were linked to fluorochromes or with peroxidase. The fate of each ligand was followed by confocal and electron microscopy in polarized primary monolayers of rat hepatocytes. When fluorescent anti-B10 IgG and fluorescent pIgA were simultaneously endocytosed for 15–30 minutes, they both uniformly labelled a juxtanuclear compartment. By 30–60 minutes, they reached the bile canaliculi. Tf and ASOR were also routed to the juxtanuclear area, but their fluorescence patterns were more punctate. Microtubule disruption prevented all ligands from reaching the juxtanuclear area. This area corresponded, at least partially, to the localization of the mannose 6-phosphate receptor, an endosomal marker. By electron microscopy, the juxtanuclear compartment was made up of anastomosing tubules connected to vacuoles, and was organized around the centrioles. B10 and pIgA were mainly found in the tubules, whereas ASOR was segregated inside the vacuolar elements and Tf within thinner, recycling tubules. In conclusion, transcytosis of the apical membrane protein B10 occurs inside tubules similar to those carrying pIgA, and involves passage via the pericentriolar area. In the pericentriolar area, the transcytotic tubules appear to maintain connections with other endosomal elements where sorting between recycled and degraded ligands occurs.


2020 ◽  
Vol 318 (4) ◽  
pp. F956-F970 ◽  
Author(s):  
Wei-Ling Wang ◽  
Shih-Han Su ◽  
Kit Yee Wong ◽  
Chan-Wei Yang ◽  
Chin-Fu Liu ◽  
...  

Aquaporin-2 (AQP2) is a vasopressin-regulated water channel protein responsible for osmotic water reabsorption by kidney collecting ducts. In response to vasopressin, AQP2 traffics from intracellular vesicles to the apical plasma membrane of collecting duct principal cells, where it increases water permeability and, hence, water reabsorption. Despite continuing efforts, gaps remain in our knowledge of vasopressin-regulated AQP2 trafficking. Here, we studied the functions of two retromer complex proteins, small GTPase Rab7 and vacuolar protein sorting 35 (Vps35), in vasopressin-induced AQP2 trafficking in a collecting duct cell model (mpkCCD cells). We showed that upon vasopressin removal, apical AQP2 returned to Rab5-positive early endosomes before joining Rab11-positive recycling endosomes. In response to vasopressin, Rab11-associated AQP2 trafficked to the apical plasma membrane before Rab5-associated AQP2 did so. Rab7 knockdown resulted in AQP2 accumulation in early endosomes and impaired vasopressin-induced apical AQP2 trafficking. In response to vasopressin, Rab7 transiently colocalized with Rab5, indicative of a role of Rab7 in AQP2 sorting in early endosomes before trafficking to the apical membrane. Rab7-mediated apical AQP2 trafficking in response to vasopressin required GTPase activity. When Vps35 was knocked down, AQP2 accumulated in recycling endosomes under vehicle conditions and did not traffic to the apical plasma membrane in response to vasopressin. We conclude that Rab7 and Vps35 participate in AQP2 sorting in early endosomes under vehicle conditions and apical membrane trafficking in response to vasopressin.


1999 ◽  
Vol 277 (4) ◽  
pp. F552-F559 ◽  
Author(s):  
David E. McCoy ◽  
Amanda L. Taylor ◽  
Brian A. Kudlow ◽  
Katherine Karlson ◽  
Margaret J. Slattery ◽  
...  

Extracellular nucleotides regulate NaCl transport in some epithelia. However, the effects of nucleotide agonists on NaCl transport in the renal inner medullary collecting duct (IMCD) are not known. The objective of this study was to determine whether ATP and related nucleotides regulate NaCl transport across mouse IMCD cell line (mIMCD-K2) epithelial monolayers and, if so, via what purinergic receptor subtypes. ATP and UTP inhibited Na+ absorption [measured via Na+ short-circuit current[Formula: see text])] and stimulated Cl− secretion [measured via Cl−short-circuit current ([Formula: see text])]. Using selective P2 agonists, we report that P2X and P2Y purinoceptors regulate [Formula: see text] and[Formula: see text]. By RT-PCR, two P2X receptor channels (P2X3, P2X4) and two P2Y G protein-coupled receptors (P2Y1, P2Y2) were identified. Functional localization of P2 purinoceptors suggest that [Formula: see text] is stimulated by apical membrane-resident P2Y purinoceptors and P2X receptor channels, whereas[Formula: see text] is inhibited by apical membrane-resident P2Y purinoceptors and P2X receptor channels. Together, we conclude that nucleotide agonists inhibit[Formula: see text] across mIMCD-K2 monolayers through interactions with P2X and P2Y purinoceptors expressed on the apical plasma membrane, whereas extracellular nucleotides stimulate [Formula: see text]through interactions with P2X and P2Y purinoceptors expressed on the apical plasma membrane.


1996 ◽  
Vol 270 (6) ◽  
pp. F927-F936 ◽  
Author(s):  
D. Biemesderfer ◽  
J. A. Payne ◽  
C. Y. Lytle ◽  
B. Forbush

The Na-K-Cl cotransporter (NKCC or BSC) has been described in numerous secretory and reabsorptive epithelia and is an important part of the mechanism of NaCl reabsorption in both the mammalian and elasmobranch kidneys. We have recently developed a panel of four monoclonal antibodies (MAbs) raised to the 195-kDa Na-K-Cl cotransport protein of the shark rectal gland (sNKCC1), which is expressed along the basolateral plasma membrane of secretory cells in this tissue (29). Here, we report immunologic studies of the Na-K-Cl cotransporter in the kidney of the dogfish shark Squalus acanthias. Western blot analysis of shark renal microsomes using MAbs J3, J7, and J25 identified proteins of approximately 195 and 150 kDa, whereas MAb J4 was not reactive. To define the cellular and subcellular distribution of the cotransport protein, immunofluorescence and immunoelectron microscopy studies were performed on fixed kidneys. Immunofluorescence microscopy on semithin (0.5-micron) cryosections demonstrated that MAbs J3, J7, and J25 intensely stained the apical plasma membrane of all distal tubule segments. Weak staining was also seen along the basolateral membrane of most distal nephrons. Immunoelectron microscopy confirmed this observation and showed that some of these segments were morphologically similar to diluting segments from other species. MAbs also reacted with the brush border and, to a lesser extent, the basolateral membrane of proximal tubules. This study supports the hypothesis that the lateral bundle zone of the elasmobranch kidney functions as a countercurrent exchanger and is consistent with the presence of multiple isoforms of the Na-K-Cl cotransporter in the shark kidney.


1989 ◽  
Vol 256 (2) ◽  
pp. F366-F369 ◽  
Author(s):  
D. Brown ◽  
E. J. Sorscher ◽  
D. A. Ausiello ◽  
D. J. Benos

Amiloride-sensitive Na+ channels were localized in semithin frozen sections of rat renal medullary collecting ducts, using polyclonal antibodies directed against purified bovine kidney Na+ channel protein. The apical plasma membrane of collecting duct principal cells was heavily stained by indirect immunofluorescence, whereas intercalated cells were negative. Basolateral plasma membranes of both cell types were unstained, as were subapical vesicles in the cytoplasm of these cells. In the thick ascending limb of Henle, some scattered granular fluorescence was seen in the cytoplasm and close to the apical pole of epithelial cells, suggesting the presence of antigenic sites associated with some membrane domains in these cells. No staining was detected in thin limbs of Henle, or in proximal tubules in the outer medulla. These results show that amiloride-sensitive sodium channels are located predominantly on the apical plasma membrane of medullary collecting duct principal cells, the cells that are involved in Na+ homeostasis in this region of the kidney.


1986 ◽  
Vol 250 (1) ◽  
pp. F1-F15 ◽  
Author(s):  
K. M. Madsen ◽  
C. C. Tisher

The distal tubule, which includes the thick ascending limb (TAL), the macula densa, and the distal convoluted tubule (DCT), and the collecting duct are structurally heterogeneous, thus reflecting the functional heterogeneity that is also present. As the TAL ascends from medulla to cortex, the surface area of the apical plasma membrane increases while that of the basolateral membrane decreases. The structure of the DCT resembles that of the medullary TAL. An excellent correlation exists between structure, Na-K-ATPase activity, and NaCl reabsorptive capacity in the distal tubule. The collecting duct is subdivided into the initial collecting tubule (ICT), and cortical (CCD), outer medullary (OMCD), and inner medullary (IMCD) collecting ducts. Between the distal tubule and the collecting duct is a transition region termed the connecting segment or connecting tubule (CNT). Considerable structural heterogeneity exists along the collecting duct within the two major cell populations, the intercalated cells and the principal cells. In the CNT, the ICT, and the CCD, potassium loading and mineralocorticoids stimulate Na-K-ATPase activity and cause proliferation of the basolateral membrane of CNT cells and principal cells, thus identifying the cells responsible for mineralocorticoid-stimulated potassium secretion in these regions. Finally, at least two morphologically distinct populations of intercalated cells exist, types A and B. In the rat, type A predominates in the CNT and the OMCD and is believed to be responsible for H+ secretion, at least in the OMCD. Type B predominates in the CCD, where it may be involved in bicarbonate secretion.


Sign in / Sign up

Export Citation Format

Share Document