Maintenance of contractility in dissociated smooth muscle: low-density cultures in a defined medium

1993 ◽  
Vol 264 (1) ◽  
pp. C229-C236 ◽  
Author(s):  
C. W. Bowers ◽  
L. M. Dahm

The loss of contractility in long-term cultures of dissociated smooth muscle is such an established observation that the lack of contractility of cultured smooth muscle cells is often not even noted. This report describes methods of dissociating and culturing smooth muscle cells from the avian amnion that maintain contractility for > 1 mo in a defined medium. Because contractility was assessed by monitoring the contractions of individual cells to neurotransmitter-related substances, it is clear that these cells maintained both contractility and pharmacological responsiveness. However, when amniotic smooth muscle cells were dissociated with enzymes containing impurities or cultured in the presence of serum, they flattened and lost contractility, as reported for many other types of smooth muscle.

1999 ◽  
Vol 277 (5) ◽  
pp. H2017-H2025 ◽  
Author(s):  
Hamid Massaeli ◽  
Cecilia Hurtado ◽  
J. Alejandro Austria ◽  
Grant N. Pierce

Vascular smooth muscle cells in atherosclerotic vessels proliferate and change from a contractile to a synthetic phenotype. To determine whether oxidized low-density lipoprotein (oxLDL) is involved in this transformation, we chronically incubated cultured smooth muscle cells with native and oxidized LDL. Western blot analysis detected a decrease in actin and myosin content in treated cells. This was dependent on the time and concentration of oxLDL employed. Confocal microscopic images of cells immunostained for smooth muscle-specific α-actin and myosin showed a normal, elongated alignment of myofilaments in cells after incubation with native LDL. Surprisingly, when the cells were treated with oxLDL, actin and myosin filaments underwent a striking process of disorganization and accumulation into ball-shaped aggregates. These changes were dependent on the duration and concentration of oxLDL employed. Our results demonstrate that oxLDL has the capacity to decrease the content of myofilaments in smooth muscle cells. The loss in myosin and actin protein may be associated with an unusual formation of large cellular aggregates that appear to be in the process of being expelled from the cell.


1996 ◽  
Vol 16 (2) ◽  
pp. 187-193 ◽  
Author(s):  
Federico Calara ◽  
Sean Ameli ◽  
Anna Hultgårdh-Nilsson ◽  
Bojan Cercek ◽  
Joel Kupfer ◽  
...  

Blood ◽  
1993 ◽  
Vol 82 (1) ◽  
pp. 66-76 ◽  
Author(s):  
MC Galmiche ◽  
VE Koteliansky ◽  
J Briere ◽  
P Herve ◽  
P Charbord

In human long-term marrow cultures connective tissue-forming stromal cells are an essential cellular component of the adherent layer where granulomonocytic progenitors are generated from week 2 onward. We have previously found that most stromal cells in confluent cultures were stained by monoclonal antibodies directed against smooth muscle- specific actin isoforms. The present study was carried out to evaluate the time course of alpha-SM-positive stromal cells and to search for other cytoskeletal proteins specific for smooth muscle cells. It was found that the expression of alpha-SM in stromal cells was time dependent. Most of the adherent spindle-shaped, vimentin-positive stromal cells observed during the first 2 weeks of culture were alpha- SM negative. On the contrary, from week 3 to week 7, most interdigitated stromal cells contained stress fibers whose backbone was made of alpha-SM-positive microfilaments. In addition, in confluent cultures, other proteins specific for smooth muscle were detected: metavinculin, h-caldesmon, smooth muscle myosin heavy chains, and calponin. This study confirms the similarity between stromal cells and smooth muscle cells. Moreover, our results reveal that cells in vivo with the phenotype closest to that of stromal cells are immature fetal smooth muscle cells and subendothelial intimal smooth muscle cells; a cell subset with limited development following birth but extensively recruited in atherosclerotic lesions. Stromal cells very probably derive from mesenchymal cells that differentiate along this distinctive vascular smooth muscle cell pathway. In humans, this differentiation seems crucial for the maintenance of granulomonopoiesis. These in vitro studies were completed by examination of trephine bone marrow biopsies from adults without hematologic abnormalities. These studies revealed the presence of alpha-SM-positive cells at diverse locations: vascular smooth muscle cells in the media of arteries and arterioles, pericytes lining capillaries, myoid cells lining sinuses at the abluminal side of endothelial cells or found within the hematopoietic logettes, and endosteal cells lining bone trabeculae. More or less mature cells of the granulocytic series were in intimate contact with the thin cytoplasmic extensions of myoid cells. Myoid cells may be the in vivo counterpart of stromal cells with the above-described vascular smooth muscle phenotype.


Sign in / Sign up

Export Citation Format

Share Document