Cell-specific regulation of cytosolic aspartate aminotransferase by glucocorticoids in the rat kidney

1993 ◽  
Vol 265 (5) ◽  
pp. C1298-C1305 ◽  
Author(s):  
S. Feilleux-Duche ◽  
M. Garlatti ◽  
M. Aggerbeck ◽  
M. Poyard ◽  
J. Bouguet ◽  
...  

The basal expression and hormonal regulation of cytosolic aspartate aminotransferase (cAspAT) were investigated in the rat kidney. In adrenalectomized animals, the basal activity was highest in the renal cortex and in the inner stripe of the outer medulla (0.1-0.15 U/mg protein). The glucocorticoid analogue dexamethasone increased cAspAT activity about twofold in the cortex and in the inner stripe of the outer medulla but not in the papilla. A half-maximal increase in the activity was achieved at doses of approximately 5 micrograms/100 g body wt. The mineralocorticoid aldosterone did not modify the cAspAT activity. The cell specificity of the hormonal regulation was analyzed by in situ hybridization. In untreated adrenalectomized rats, a cAspAT cRNA probe labeled mainly the inner stripe of the outer medulla. After dexamethasone or hydrocortisone treatment, labeling was uniformly increased in this part of the medulla and was heterogeneously increased in the renal cortex. The specific increase in labeling within the cortex was shown to be confined to the distal convoluted tubule and the thick ascending limb. We conclude that, in addition to widespread basal expression, cAspAT is regulated by glucocorticoids in a highly cell-specific manner in the renal cortex. The enzyme may thus participate in the increased energy metabolism elicited by these hormones in these cells.

1996 ◽  
Vol 271 (3) ◽  
pp. F619-F628 ◽  
Author(s):  
C. A. Ecelbarger ◽  
J. Terris ◽  
J. R. Hoyer ◽  
S. Nielsen ◽  
J. B. Wade ◽  
...  

To investigate the role of the thick ascending limb (TAL) Na(+)-K(+)-2Cl- cotransporter in regulation of water excretion, we have prepared a peptide-derived polyclonal antibody based on the cloned cDNA sequence of the rat type 1 bumetanide-sensitive cotransporter, BSC-1 (also termed "NKCC-2"). Immunoblots revealed a single broad 161-kDa band in membrane fractions of rat renal outer medulla and cortex but not from rat colon or parotid gland. A similar protein was labeled in mouse kidney. Immunoperoxidase immunohistochemistry in rat kidney revealed labeling restricted to the medullary and cortical TAL segments. Because long-term regulation of urinary concentrating ability may depend on regulation of Na(+)-K(+)-2Cl- cotransporter abundance, we used immunoblotting to evaluate the effects of several in vivo factors on expression levels of BSC-1 protein in rat kidney outer medulla. Chronic oral saline loading with 0.16 M NaCl markedly increased BSC-1 abundance. However, long-term vasopressin infusion or thirsting of rats did not affect BSC-1 abundance. Chronic furosemide infusion caused a 9-kDa upward shift in apparent molecular mass and an apparent increase in expression level. These results support the previous identification of BSC-1 as the TAL Na(+)-K(+)-2Cl- transporter and demonstrate that the expression of this transporter is regulated.


2002 ◽  
Vol 282 (3) ◽  
pp. F393-F407 ◽  
Author(s):  
Elena Arystarkhova ◽  
Randall K. Wetzel ◽  
Kathleen J. Sweadner

Renal Na+-K+-ATPase is associated with the γ-subunit (FXYD2), a single-span membrane protein that modifies ATPase properties. There are two splice variants with different amino termini, γa and γb. Both were found in the inner stripe of the outer medulla in the thick ascending limb. Coimmunoprecipitation with each other and the α-subunit indicated that they were associated in macromolecular complexes. Association was controlled by ligands that affect Na+-K+-ATPase conformation. In the cortex, the proportion of the γb-subunit was markedly lower, and the γa-subunit predominated in isolated proximal tubule cells. By immunofluorescence, the γb-subunit was detected in the superficial cortex only in the distal convoluted tubule and connecting tubule, which are rich in Na+-K+-ATPase but comprise a minor fraction of cortex mass. In the outer stripe of the outer medulla and for a short distance in the deep cortex, the thick ascending limb predominantly expressed the γb-subunit. Because different mechanisms maintain and regulate Na+ homeostasis in different nephron segments, the splice forms of the γ-subunit may have evolved to control the renal Na+ pump through pump properties, gene expression, or both.


2000 ◽  
Vol 279 (5) ◽  
pp. F901-F909 ◽  
Author(s):  
Henrik Vorum ◽  
Tae-Hwan Kwon ◽  
Christiaan Fulton ◽  
Brian Simonsen ◽  
Inyeong Choi ◽  
...  

An electroneutral Na-HCO3 − cotransporter (NBCN1) was recently cloned, and Northern blot analyses indicated its expression in rat kidney. In this study, we determined the cellular and subcellular localization of NBCN1 in the rat kidney at the light and electron microscopic level. A peptide-derived antibody was raised against the COOH-terminal amino acids of NBCN1. The affinity-purified antibody specifically recognized one band, ∼180 kDa, in rat kidney membranes. Peptide- N-glycosidase F deglycosylation reduced the band to ∼140 kDa. Immunoblotting of membrane fractions from different kidney regions demonstrated strong signals in the inner stripe of the outer medulla (ISOM), weaker signals in the outer stripe of the outer medulla and inner medulla, and no labeling in cortex. Immunocytochemistry demonstrated that NBCN1 immunolabeling was exclusively observed in the basolateral domains of thick ascending limb (TAL) cells in the outer medulla (strongest in ISOM) but not in the cortex. In addition, collecting duct intercalated cells in the ISOM and in the inner medulla also exhibited NBCN1 immunolabeling. Immunoelectron microscopy demonstrated that NBCN1 labeling was confined to the basolateral plasma membranes of TAL and collecting duct type A intercalated cells. Immunolabeling controls were negative. By using 2,7-bis-carboxyethyl-5,6-caboxyfluorescein, intracellular pH transients were measured in kidney slices from ISOM and from mid-inner medulla. The results revealed DIDS-sensitive, Na- and HCO3 −-dependent net acid extrusion only in the ISOM but not in mid-inner medulla, which is consistent with the immunolocalization of NBCN1. The localization of NBCN1 in medullary TAL cells and medullary collecting duct intercalated cells suggests that NBCN1 may be important for electroneutral basolateral HCO3 − transport in these cells.


1995 ◽  
Vol 268 (4) ◽  
pp. F643-F650 ◽  
Author(s):  
R. K. Zalups ◽  
J. Fraser ◽  
J. Koropatnick

Metallothioneins (MTs) have been implicated in the intracellular regulation of essential metals in eukaryotic cells, and increased expression of MT genes has been demonstrated during the growth and proliferation of cells. To explore the expression of MT in somatic cells undergoing growth (hypertrophy) in the kidney in situ, we measured the rates of transcription of the genes for MT-1 and MT-2, measured the levels of mRNA for MT-1 and MT-2, and measured the concentration of MT-1 and MT-2 protein in samples of renal (and hepatic) tissue from uninephrectomized (NPX) and sham-operated (SO) rats 15 days after surgery. The rates of transcription of the genes for MT-1 and MT-2 were found to be enhanced significantly in the remnant renal mass, particularly in the cortex and outer stripe of the outer medulla, and in the liver, after uninephrectomy and after 15 days allowing for compensatory renal growth. Increased accumulation of mRNA for MT-1 and MT-2 also occurred in the cortex and outer stripe of the outer medulla of the remnant kidney and in the liver in the NPX rats. Increased concentration of MT-1 and MT-2 protein (measured by radioimmunoassay), at the level of the whole kidney, renal cortex, and liver, was another feature detected in rats after uninephrectomy and 15 days of compensatory renal growth. These findings indicate that compensatory renal growth in response to uninephrectomy is associated with the induction of the expression of MT genes in the renal cortex and outer stripe of the outer medulla, as well as in the liver.(ABSTRACT TRUNCATED AT 250 WORDS)


Hypertension ◽  
2016 ◽  
Vol 68 (suppl_1) ◽  
Author(s):  
Wanting Wang ◽  
Rong Rong ◽  
Osamu Ito ◽  
Yoshiko Ogawa ◽  
Yoshikazu Muroya ◽  
...  

20-hydroxyeicosatetraenoic acids (20-HETE) is a cytochrome P-450 (CYP) 4A-dependent metabolite of arachidonic acid and regulates vascular tone and renal tubular function. Previous studies showed that angiotensin II (Ang II) stimulated the renal CYP activity and 20-HETE production through the Ang II type 1 (AT1) receptor and that the Ang II-increased the 20-HETE was linked to the Ang II type 2(AT2) receptor. Thus, the study was designed to clarify the role of Ang II in CYP4A isoforms expression in the rat kidney. Male Sprague-Dawley rats were infused Ang II at low dose (AL, 0.17mg/kg/min, sc) and high dose (AH, 0.70mg/kg/day, sc) by using osmotic mini pump, with or without AT1 receptor blocker candesartan (1 and 3mg/kg/day, po) for 1 week. The protein expression of CYP4A isoforms, AT1 receptor and AT2 receptor in the renal cortex, outer medulla, and inner medulla was examined by immunoblot analysis. The mRNA expression of CYP4A isoforms was examined by reverse transcription and polymerase chain reaction (RT-PCR). Ang II at high dose increased systolic blood pressure (control, 109±2; AH, 164±8 mmHg, p<0.01), creatinine (control, 0.24±0.00; AH, 0.29±0.01 mg/dl, p<0.01) and urinary albumin excretion (control, 20.3±5.9; AH, 2398.6±303.6 μg/mg creatinine, p<0.01). In the control group, the CYP4A1, 4A2, and 4A8 proteins were highly expressed in the renal cortex, lowly expressed in the outer medulla, barely detected in the inner medulla. The AT1 receptor was expressed in kidney sections; highly in the outer and inner medulla, the AT2 receptor was only detected in the outer medulla. Ang II dose-dependently increased all CYP4A isoform proteins in the renal cortex and outer medulla (CYP4A1, 24% and 222%; CYP4A2, by 51% and 258%; CYP4A8, by 52% and 550%, p<0.05). Ang II also increased all CYP4A isoform mRNAs in the renal cortex and outer medulla. The candesartan treatment dose-dependently inhibited the Ang II-increased blood pressure, creatinine, urinary albumin excretion and CYP4A isoform expressions. These results indicated that Ang II increases CYP4A isoform expressions in the kidney through AT1 receptor. The Ang II-upregulated CYP4A expressions may play an important role in hypertension and renal function.


2003 ◽  
Vol 285 (1) ◽  
pp. F152-F165 ◽  
Author(s):  
Tae-Hwan Kwon ◽  
Jakob Nielsen ◽  
Young-Hee Kim ◽  
Mark A. Knepper ◽  
Jørgen Frøkiær ◽  
...  

The effect of ANG II treatment of rats for 7 days was examined with respect to the abundance and subcellular localization of key thick ascending limb (TAL) Na+ transporters. Rats were on a fixed intake of Na+ and water and treated with 0, 12.5, 25, 50 (ANG II-50), 100 (ANG II-100), and 200 (ANG II-200) ng·min-1·kg-1 ANG II (sc). Semiquantitative immunoblotting revealed that Na+/H+ exchanger 3 (NHE3) abundance in the inner stripe of the outer medulla (ISOM) of ANG II-treated rats was significantly increased: 179 ± 28 (ANG II-50, n = 5), 166 ± 23 (ANG II-100, n = 7), and 167 ± 19% (ANG II-200, n = 4) of control levels ( n = 6, P < 0.05), whereas lower doses of ANG II were ineffective. The abundance of the bumetanide-sensitive Na+-K+-2Cl- cotransporter (BSC-1) in the ISOM was also increased to 187 ± 28 (ANG II-50), 162 ± 23 (ANG II-100), and 166 ± 19% (ANG II-200) of control levels ( P < 0.05), but there were no changes in the abundance of Na+-K+-ATPase and the electroneutral Na+-HCO3 cotransporter NBCn1. Immunocytochemistry confirmed the increase in NHE3 and BSC-1 labeling in medullary TAL (mTAL). In the cortex and the outer strip of the outer medulla, NHE3 abundance was unchanged, whereas immunocytochemistry revealed markedly increased NHE3 labeling of the proximal tubule brush border, suggesting subcellular redistribution of NHE3 or differential protein-protein interaction. Despite this, ANG II-treated rats (50 ng·min-1·kg-1 for 5 days, n = 6) had a higher urinary pH compared with controls. NH4Cl loading completely blocked all effects of ANG II infusion on NHE3 and BSC-1, suggesting a potential role of pH as a mediator of these effects. In conclusion, increased abundance of NHE3 and BSC-1 in mTAL cells as well as increased NHE3 in the proximal tubule brush border may contribute to enhanced renal Na+ and HCO3 reabsorption in response to ANG II.


2006 ◽  
Vol 291 (4) ◽  
pp. F812-F822 ◽  
Author(s):  
Jane Stubbe ◽  
Kirsten Madsen ◽  
Finn Thomsen Nielsen ◽  
Ole Skøtt ◽  
Boye L. Jensen

In the rat, urinary concentrating ability develops progressively during the third postnatal (P) week and nearly reaches adult level at weaning ( P21) governed by a rise in circulating glucocorticoid. Elevated extracellular osmolality can lead to growth arrest of epithelial cells. We tested the hypothesis that supranormal exposure of rat pups to glucocorticoid before the endogenous surge enhances urinary concentrating ability but inhibits renomedullary cell proliferation. Proliferating-cell nuclear antigen (PCNA)-positive cells shifted from the nephrogenic zone in the first postnatal week to Tamm-Horsfall-positive thick ascending limb (TAL) cells at the corticomedullary junction at P10– 14. Renal PCNA protein abundance was stable in the suckling period and decreased 10-fold after weaning. Renal PCNA protein abundance decreased in response to dexamethasone (DEXA; 100 μg·kg−1·day−1, P8–12). Prolonged administration of DEXA ( P1-P11) reduced selectively the area and thickness of the outer medulla and the number of PCNA-positive cells. DEXA ( P8– 12) increased urinary and papillary osmolality in normohydrated and water-deprived pups and led to osmotic equilibrium between interstitium and urine, whereas apoptotic and GADD153-positive cells increased in the inner medulla. TAL-associated NaCl transporters Na-K-2Cl cotransporter, Na-K-ATPase-α1, Na/H exchanger type 3, and ROMK increased significantly at weaning and in response to DEXA. We conclude that a low level of circulating glucocorticoid is permissive for proliferation of Henle's loop and the outer medulla before weaning. A reduced papillary tonicity is a crucial factor for the reduced capacity to concentrate urine during postnatal kidney development. We speculate that supranormal exposure to glucocorticoid in the suckling period can alter kidney medullary structure and function permanently.


2014 ◽  
Vol 307 (3) ◽  
pp. F263-F272 ◽  
Author(s):  
Brendan C. Fry ◽  
Aurélie Edwards ◽  
Ioannis Sgouralis ◽  
Anita T. Layton

We have developed a highly detailed mathematical model of solute transport in the renal medulla of the rat kidney to study the impact of the structured organization of nephrons and vessels revealed in anatomic studies. The model represents the arrangement of tubules around a vascular bundle in the outer medulla and around a collecting duct cluster in the upper inner medulla. Model simulations yield marked gradients in intrabundle and interbundle interstitial fluid oxygen tension (Po2), NaCl concentration, and osmolality in the outer medulla, owing to the vigorous active reabsorption of NaCl by the thick ascending limbs. In the inner medulla, where the thin ascending limbs do not mediate significant active NaCl transport, interstitial fluid composition becomes much more homogeneous with respect to NaCl, urea, and osmolality. Nonetheless, a substantial Po2 gradient remains, owing to the relatively high oxygen demand of the inner medullary collecting ducts. Perhaps more importantly, the model predicts that in the absence of the three-dimensional medullary architecture, oxygen delivery to the inner medulla would drastically decrease, with the terminal inner medulla nearly completely deprived of oxygen. Thus model results suggest that the functional role of the three-dimensional medullary architecture may be to preserve oxygen delivery to the papilla. Additionally, a simulation that represents low medullary blood flow suggests that the separation of thick limbs from the vascular bundles substantially increases the risk of the segments to hypoxic injury. When nephrons and vessels are more homogeneously distributed, luminal Po2 in the thick ascending limb of superficial nephrons increases by 66% in the inner stripe. Furthermore, simulations predict that owing to the Bohr effect, the presumed greater acidity of blood in the interbundle regions, where thick ascending limbs are located, relative to that in the vascular bundles, facilitates the delivery of O2 to support the high metabolic requirements of the thick limbs and raises NaCl reabsorption.


1978 ◽  
Vol 89 (2) ◽  
pp. 404-416 ◽  
Author(s):  
Naokazu Nagata ◽  
Nobuko Araki-Shimada ◽  
Yuriko Ono ◽  
Narimichi Kimura

ABSTRACT The effects of parathyroid hormone (PTH) and calcitonin (CT) on cAMP metabolism in rat kidney were examined with particular attention to the localization of the hormone-sensitive adenylate cyclase. In the cortical slices, CT produced an accumulation of cAMP only in the absence of PTH or in the presence of PTH in concentrations which did not induce a maximal increase in the cAMP levels. The lack of additive effect of PTH and CT was confirmed by examining the production of [14C]cAMP in the pre-labelled tissue. Although PTH-sensitive adenylate cyclase was demonstrated predominantly in the renal cortex, PTH also stimulated the enzyme of the tip of the renal papilla. The effect was elicited even in the presence of maximally effective concentrations of vasopressin (ADH). CT-sensitive adenylate cyclase was distributed through all the regions of the kidney except for the papillary tip. Its pattern of distribution exhibited a biphasic curve with peaks at inner medulla and outer cortex. The effect of CT on the enzyme from the papillary base was detected only in the absence of ADH. Additivity of the combined stimulation by addition of PTH and CT on adenylate cyclase varied in different regions of the kidney. Additivity was apparently total in papilla, but partial in medulla and absent in cortex. It is concluded that, although the patterns of distribution of adenylate cyclase responsive to PTH, CT and ADH are different, there are interactions of different degrees among the hormones in stimulating renal adenylate cyclase. This is especially true in the renal cortex, where the majority of PTH or CT sensitive adenylate cyclase activity are present. It seems that all the CT-responsive system is partly involved in the system responsive to PTH.


1997 ◽  
Vol 8 (12) ◽  
pp. 1823-1830 ◽  
Author(s):  
P A Mennitt ◽  
J B Wade ◽  
C A Ecelbarger ◽  
L G Palmer ◽  
G Frindt

Renal potassium secretion occurs in the distal segments of the nephron through apically located secretory potassium (SK) channels. SK may correspond to the ROMK channels cloned from rat kidney. In this study, the localization of ROMK at the cellular level in the rat kidney was examined using an affinity-purified polyclonal antibody raised against a C-terminal peptide of ROMK. The specificity of the antibody was demonstrated by immunoblots of membranes of Xenopus oocytes expressing ROMK2. Immunoblots of homogenates from rat renal outer medulla and cortex revealed predominant bands of 70 to 75 kD, which were ablated by preadsorption with an excess of peptide. These bands were specific for the rat kidney. Immunolocalization studies revealed that ROMK is expressed in specific nephron segments in both the cortex and medulla. In the cortex, ROMK was found in the apical domain of the thick ascending limb of Henle's loop, the connecting tubule, and in some, but not all, cells of cortical collecting tubules. In the medulla, expression in the apical membrane of the thick ascending limbs of Henle's loop was strong, whereas outer medullary collecting ducts were weakly stained. Expression in the thick ascending limb was also heterogeneous; some cells that expressed the Na-K-Cl cotransporter were weakly stained with the anti-ROMK antibody. No staining of glomeruli, proximal tubules, or inner medullary collecting ducts was found. The localization of ROMK agrees well with the findings of SK in patch-clamp studies and supports the view that ROMK is the SK channel of the distal segments of the nephron.


Sign in / Sign up

Export Citation Format

Share Document