Localization and regulation of the rat renal Na(+)-K(+)-2Cl- cotransporter, BSC-1

1996 ◽  
Vol 271 (3) ◽  
pp. F619-F628 ◽  
Author(s):  
C. A. Ecelbarger ◽  
J. Terris ◽  
J. R. Hoyer ◽  
S. Nielsen ◽  
J. B. Wade ◽  
...  

To investigate the role of the thick ascending limb (TAL) Na(+)-K(+)-2Cl- cotransporter in regulation of water excretion, we have prepared a peptide-derived polyclonal antibody based on the cloned cDNA sequence of the rat type 1 bumetanide-sensitive cotransporter, BSC-1 (also termed "NKCC-2"). Immunoblots revealed a single broad 161-kDa band in membrane fractions of rat renal outer medulla and cortex but not from rat colon or parotid gland. A similar protein was labeled in mouse kidney. Immunoperoxidase immunohistochemistry in rat kidney revealed labeling restricted to the medullary and cortical TAL segments. Because long-term regulation of urinary concentrating ability may depend on regulation of Na(+)-K(+)-2Cl- cotransporter abundance, we used immunoblotting to evaluate the effects of several in vivo factors on expression levels of BSC-1 protein in rat kidney outer medulla. Chronic oral saline loading with 0.16 M NaCl markedly increased BSC-1 abundance. However, long-term vasopressin infusion or thirsting of rats did not affect BSC-1 abundance. Chronic furosemide infusion caused a 9-kDa upward shift in apparent molecular mass and an apparent increase in expression level. These results support the previous identification of BSC-1 as the TAL Na(+)-K(+)-2Cl- transporter and demonstrate that the expression of this transporter is regulated.

2006 ◽  
Vol 291 (4) ◽  
pp. F812-F822 ◽  
Author(s):  
Jane Stubbe ◽  
Kirsten Madsen ◽  
Finn Thomsen Nielsen ◽  
Ole Skøtt ◽  
Boye L. Jensen

In the rat, urinary concentrating ability develops progressively during the third postnatal (P) week and nearly reaches adult level at weaning ( P21) governed by a rise in circulating glucocorticoid. Elevated extracellular osmolality can lead to growth arrest of epithelial cells. We tested the hypothesis that supranormal exposure of rat pups to glucocorticoid before the endogenous surge enhances urinary concentrating ability but inhibits renomedullary cell proliferation. Proliferating-cell nuclear antigen (PCNA)-positive cells shifted from the nephrogenic zone in the first postnatal week to Tamm-Horsfall-positive thick ascending limb (TAL) cells at the corticomedullary junction at P10– 14. Renal PCNA protein abundance was stable in the suckling period and decreased 10-fold after weaning. Renal PCNA protein abundance decreased in response to dexamethasone (DEXA; 100 μg·kg−1·day−1, P8–12). Prolonged administration of DEXA ( P1-P11) reduced selectively the area and thickness of the outer medulla and the number of PCNA-positive cells. DEXA ( P8– 12) increased urinary and papillary osmolality in normohydrated and water-deprived pups and led to osmotic equilibrium between interstitium and urine, whereas apoptotic and GADD153-positive cells increased in the inner medulla. TAL-associated NaCl transporters Na-K-2Cl cotransporter, Na-K-ATPase-α1, Na/H exchanger type 3, and ROMK increased significantly at weaning and in response to DEXA. We conclude that a low level of circulating glucocorticoid is permissive for proliferation of Henle's loop and the outer medulla before weaning. A reduced papillary tonicity is a crucial factor for the reduced capacity to concentrate urine during postnatal kidney development. We speculate that supranormal exposure to glucocorticoid in the suckling period can alter kidney medullary structure and function permanently.


2001 ◽  
Vol 12 (1) ◽  
pp. 10-18
Author(s):  
CAROLYN A. ECELBARGER ◽  
GHEUN-HO KIM ◽  
MARK A. KNEPPER ◽  
JIE LIU ◽  
MARGARET TATE ◽  
...  

Abstract. The renal outer medullary potassium channel (ROMK) of the thick ascending limb (TAL) is a critical component of the counter-current multiplication mechanism. In this study, two new antibodies raised to ROMK were used to investigate changes in the renal abundance of ROMK with treatments known to strongly promote TAL function. These antibodies specifically recognized protein of the predicted size of 45 kD in immunoblots of rat kidney or COS cells transfected with ROMK cDNA. Infusion of 1-deamino-(8-D-arginine)-vasopressin (dDAVP), a vasopressin V2 receptor-selective agonist, for 7 d into Brattleboro rats resulted in dramatic increases in apical membrane labeling of ROMK in the TAL of dDAVP-treated rats, as assessed by immunocytochemical analyses. Using immunoblotting, a more than threefold increase in immunoreactive ROMK levels was observed in the outer medulla after dDAVP infusion. Restriction of water intake to increase vasopressin levels also significantly increased TAL ROMK immunolabeling and abundance in immunoblots. In addition, dietary Na+ levels were varied to determine whether ROMK abundance was also affected under other conditions known to alter TAL transport. Rats fed higher levels of sodium, as either NaCl or NaHCO3 (8 mEq/250 g body wt per d), exhibited significantly increased density of the 45-kD band, compared with the respective control animals. Moreover, in rats fed a low-NaCl diet (0.25 mEq/250 g body wt per d), a 50% decrease in band density for the 45-kD band was observed (relative to control rats fed 2.75 mEq/250 g body wt per d of NaCl). These results demonstrate that long-term adaptive changes in ROMK abundance occur in the TAL with stimuli that enhance transport by this segment.


1987 ◽  
Vol 252 (2) ◽  
pp. F331-F337 ◽  
Author(s):  
W. Lieberthal ◽  
M. L. Vasilevsky ◽  
C. R. Valeri ◽  
N. G. Levinsky

Interactions between antidiuretic hormone (ADH) and renal prostaglandins in the regulation of sodium reabsorption and urinary concentrating ability were studied in isolated erythrocyte-perfused rat kidneys (IEPK). In this model, hemodynamic characteristics are comparable to those found in vivo, and tubular morphology is preserved throughout the period of perfusion. [Deamino]-D-arginine vasopressin (dDAVP) markedly reduced fractional sodium excretion (FE Na) in the IEPK from 3.5 +/- 0.6 to 0.45 +/- 0.14%. After indomethacin, FE Na fell still further to 0.08 +/- 0.02%. In the absence of dDAVP indomethacin had no effect on sodium excretion; FE Na was 2.4 +/- 0.6% in control and 2.0 +/- 0.4% in indomethacin-treated groups. dDAVP increased urine osmolality in the IEPK to 741 +/- 26 mosmol/kg. When prostaglandin synthesis was blocked with indomethacin, urinary osmolality increased further to 1,180 +/- 94 mosmol/kg. In isolated kidneys perfused without erythrocytes (IPK), dDAVP decreased FENa from 14.5 +/- 1.8% to 9.6 +/- 1.2%; addition of indomethacin had no further effect. dDAVP increased urine osmolality only modestly to 350 +/- 12 mosmol/kg in the IPK and indomethacin did not increase concentrating ability further (342 +/- 7 mosmol/kg). Thus the IEPK (unlike the IPK) can excrete a markedly hypertonic urine in response to ADH. ADH also enhances tubular reabsorption of sodium in the IEPK. Prostaglandins inhibit both these actions of ADH but do not directly affect sodium excretion in the absence of the hormone.


1993 ◽  
Vol 264 (6) ◽  
pp. E951-E957 ◽  
Author(s):  
C. B. Whorwood ◽  
P. C. Barber ◽  
J. Gregory ◽  
M. C. Sheppard ◽  
P. M. Stewart

In the rat kidney 11 beta-hydroxysteroid dehydrogenase (11 beta-HSD) maintains normal in vivo specificity for mineralocorticoid receptor (MR) by converting the active steroid corticosterone to inactive 11-dehydrocorticosterone, leaving aldosterone to occupy the MR. Clinical observations support the hypothesis that 11 beta-HSD also protects the distal colonic MR from glucocorticoid excess. We have measured 11 beta-HSD mRNA and activity along the rat colon and have analyzed the distribution of 11 beta-HSD, MR, and glucocorticoid receptor (GR) mRNA within rat distal colon using in situ hybridization. Levels of 11 beta-HSD mRNA (1.7 and 3.4 kb) and activity were higher in distal vs. proximal colon, paralleling reported MR mRNA levels. Within the distal colon mucosa both 11 beta-HSD immunoreactivity and mRNA was observed in cells in the lamina propria but not in epithelial cells. MR mRNA was present in surface epithelial cells, but was also colocalized with the same 11 beta-HSD-expressing cells in the lamina propria. In contrast GR mRNA was more uniformly distributed. The localization of MR mRNA to nonepithelial cells in the lamina propria, possibly neuroendocrine cells, suggests that mineralocorticoid-regulated sodium transport across colonic epithelial cells may also involve a paracrine mechanism. As with the kidney, exposure of active mineralocorticoid to the MR in these cells in the lamina propria is dictated by 11 beta-HSD in an autocrine fashion.


Hypertension ◽  
2013 ◽  
Vol 62 (suppl_1) ◽  
Author(s):  
Jan Wysocki ◽  
Philipp K Haber ◽  
Minghao Ye ◽  
Christoph Maier ◽  
Mark J Osborn ◽  
...  

Chronic and sustained amplification of ACE2 activity in vivo has required the development of transgenic mice or the use of viral vectors. Minicircle is a new gene delivery technology which is resistant to gene silencing, and therefore represents an attractive platform for gene replacement strategies in vivo . Here we cloned cDNA of soluble mouse ACE2 into a circular expression cassette and the resulting ACE2 minicircle (MC) was injected to female FVB mice using iv. hydrodynamic approach (10ug or 30ug/mouse). At 3-7d after MC administration, serum ACE2 activity in mice that received 10ug ACE2MC (n=9) was over 100-fold higher than in controls (n=9) (138±48 vs 0.7±0.2 RFU/uL/hr) and in ACE2MC mice (30ug) (n=8) was almost 1000-fold higher than in controls (n=14) (480 ±153 vs 0.5±0.1 RFU/uL/hr, respectively). Mice that received 10 ug ACE2MC were followed for consecutive serum ACE2 activity monitoring, BP measurements and plasma Ang levels. The increase in serum ACE2 activity was sustained until the end of the study (up to 82 days) (Figure). Despite such a marked increase in serum ACE2 activity in ACE2MC mice, conscious SBP was not different from controls (137±8 vs 138±7 mmHg, respectively). At the end of the study, when Ang II was infused acutely (0.2 ug/kg BW i.p.), the increase in plasma Ang II in ACE2MC mice was significantly reduced compared to control mice (915±154 vs 1420±131 fmoL/mL, p<0.05). Mini-circle delivery of ACE2 results in a dose-dependent and sustained long-term increase in serum ACE2 that efficiently degrades plasma Ang II. Extremely high increases in serum ACE2 activity do not reduce BP probably due to activation of non-ACE2 dependent compensatory Ang-hydrolyzing pathways.


1999 ◽  
Vol 277 (2) ◽  
pp. F219-F226 ◽  
Author(s):  
Patricia Fernández-Llama ◽  
Carolyn A. Ecelbarger ◽  
Joseph A. Ware ◽  
Peter Andrews ◽  
Alanna J. Lee ◽  
...  

Cyclooxygenase inhibitors, such as indomethacin and diclofenac, have well-described effects to enhance renal water reabsorption and urinary concentrating ability. Concentrating ability is regulated in part at the level of the thick ascending limb of Henle’s loop, where active NaCl absorption drives the countercurrent multiplication mechanism. We used semiquantitative immunoblotting to test the effects of indomethacin and diclofenac, given over a 48-h period, on the expression levels of the ion transporters responsible for active NaCl transport in the thick ascending limb. Both agents strongly increased the expression level of the apical Na-K-2Cl cotransporter in both outer medulla and cortex. Neither agent significantly altered outer medullary expression levels of other thick ascending limb proteins, namely, the type 3 Na/H exchanger (NHE-3), Tamm-Horsfall protein, or α1- or β1-subunits of the Na-K-ATPase. Administration of the EP3-selective PGE2analog, misoprostol, to indomethacin-treated rats reversed the stimulatory effect of indomethacin on Na-K-2Cl cotransporter expression. We conclude that cyclooxygenase inhibitors enhance urinary concentrating ability in part through effects to increase Na-K-2Cl cotransporter expression in the thick ascending limb of Henle’s loop. This action is most likely due to elimination of an EP3-receptor-mediated tonic inhibitory effect of PGE2 on cAMP production.


2002 ◽  
Vol 282 (3) ◽  
pp. F393-F407 ◽  
Author(s):  
Elena Arystarkhova ◽  
Randall K. Wetzel ◽  
Kathleen J. Sweadner

Renal Na+-K+-ATPase is associated with the γ-subunit (FXYD2), a single-span membrane protein that modifies ATPase properties. There are two splice variants with different amino termini, γa and γb. Both were found in the inner stripe of the outer medulla in the thick ascending limb. Coimmunoprecipitation with each other and the α-subunit indicated that they were associated in macromolecular complexes. Association was controlled by ligands that affect Na+-K+-ATPase conformation. In the cortex, the proportion of the γb-subunit was markedly lower, and the γa-subunit predominated in isolated proximal tubule cells. By immunofluorescence, the γb-subunit was detected in the superficial cortex only in the distal convoluted tubule and connecting tubule, which are rich in Na+-K+-ATPase but comprise a minor fraction of cortex mass. In the outer stripe of the outer medulla and for a short distance in the deep cortex, the thick ascending limb predominantly expressed the γb-subunit. Because different mechanisms maintain and regulate Na+ homeostasis in different nephron segments, the splice forms of the γ-subunit may have evolved to control the renal Na+ pump through pump properties, gene expression, or both.


2010 ◽  
Vol 299 (6) ◽  
pp. F1473-F1485 ◽  
Author(s):  
Daniel Ackermann ◽  
Nikolay Gresko ◽  
Monique Carrel ◽  
Dominique Loffing-Cueni ◽  
Daniel Habermehl ◽  
...  

Aldosterone and corticosterone bind to mineralocorticoid (MR) and glucocorticoid receptors (GR), which, upon ligand binding, are thought to translocate to the cell nucleus to act as transcription factors. Mineralocorticoid selectivity is achieved by the 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2) that inactivates 11β-hydroxy glucocorticoids. High expression levels of 11β-HSD2 characterize the aldosterone-sensitive distal nephron (ASDN), which comprises the segment-specific cells of late distal convoluted tubule (DCT2), connecting tubule (CNT), and collecting duct (CD). We used MR- and GR-specific antibodies to study localization and regulation of MR and GR in kidneys of rats with altered plasma aldosterone and corticosterone levels. In control rats, MR and GR were found in cell nuclei of thick ascending limb (TAL), DCT, CNT, CD cells, and intercalated cells (IC). GR was also abundant in cell nuclei and the subapical compartment of proximal tubule (PT) cells. Dietary NaCl loading, which lowers plasma aldosterone, caused a selective removal of GR from cell nuclei of 11β-HSD2-positive ASDN. The nuclear localization of MR was unaffected. Adrenalectomy (ADX) resulted in removal of MR and GR from the cell nuclei of all epithelial cells. Aldosterone replacement rapidly relocated the receptors in the cell nuclei. In ASDN cells, low-dose corticosterone replacement caused nuclear localization of MR, but not of GR. The GR was redistributed to the nucleus only in PT, TAL, early DCT, and IC that express no or very little 11β-HSD2. In ASDN cells, nuclear GR localization was only achieved when corticosterone was replaced at high doses. Thus ligand-induced nuclear translocation of MR and GR are part of MR and GR regulation in the kidney and show remarkable segment- and cell type-specific characteristics. Differential regulation of MR and GR may alter the level of heterodimerization of the receptors and hence may contribute to the complexity of corticosteroid effects on ASDN function.


2015 ◽  
Vol 29 (S1) ◽  
Author(s):  
Kelly Pandolfi ◽  
Shirley Szriber ◽  
Deise Leite‐Dellova ◽  
Margarida Mello‐Aires
Keyword(s):  

2000 ◽  
Vol 279 (5) ◽  
pp. F901-F909 ◽  
Author(s):  
Henrik Vorum ◽  
Tae-Hwan Kwon ◽  
Christiaan Fulton ◽  
Brian Simonsen ◽  
Inyeong Choi ◽  
...  

An electroneutral Na-HCO3 − cotransporter (NBCN1) was recently cloned, and Northern blot analyses indicated its expression in rat kidney. In this study, we determined the cellular and subcellular localization of NBCN1 in the rat kidney at the light and electron microscopic level. A peptide-derived antibody was raised against the COOH-terminal amino acids of NBCN1. The affinity-purified antibody specifically recognized one band, ∼180 kDa, in rat kidney membranes. Peptide- N-glycosidase F deglycosylation reduced the band to ∼140 kDa. Immunoblotting of membrane fractions from different kidney regions demonstrated strong signals in the inner stripe of the outer medulla (ISOM), weaker signals in the outer stripe of the outer medulla and inner medulla, and no labeling in cortex. Immunocytochemistry demonstrated that NBCN1 immunolabeling was exclusively observed in the basolateral domains of thick ascending limb (TAL) cells in the outer medulla (strongest in ISOM) but not in the cortex. In addition, collecting duct intercalated cells in the ISOM and in the inner medulla also exhibited NBCN1 immunolabeling. Immunoelectron microscopy demonstrated that NBCN1 labeling was confined to the basolateral plasma membranes of TAL and collecting duct type A intercalated cells. Immunolabeling controls were negative. By using 2,7-bis-carboxyethyl-5,6-caboxyfluorescein, intracellular pH transients were measured in kidney slices from ISOM and from mid-inner medulla. The results revealed DIDS-sensitive, Na- and HCO3 −-dependent net acid extrusion only in the ISOM but not in mid-inner medulla, which is consistent with the immunolocalization of NBCN1. The localization of NBCN1 in medullary TAL cells and medullary collecting duct intercalated cells suggests that NBCN1 may be important for electroneutral basolateral HCO3 − transport in these cells.


Sign in / Sign up

Export Citation Format

Share Document