Effects of okadaic acid and intracellular Cl- on Na(+)-K(+)-Cl- cotransport

1995 ◽  
Vol 269 (4) ◽  
pp. C878-C883 ◽  
Author(s):  
A. A. Altamirano ◽  
G. E. Breitwieser ◽  
J. M. Russell

The Na(+)-K(+)-Cl- cotransporter of the squid giant axon requires ATP and is inhibited by intracellular Cl- (Cli-) in a concentration-dependent manner ([Cl-]i > or = 200 mM completely inhibits the cotransporter). In the present study we address the question of whether inhibition of cotransport by Cli- is due to a Cl(i-)-induced increase of protein phosphatase activity. Intracellular dialysis was used to apply the phosphatase inhibitor okadaic acid (OKA) under conditions of [Cl-]i at 0, 150, or 300 mM during measurement of cotransporter-mediated unidirectional Cl- influx into axons. At 0 mM [Cl-]i, the application of 250 nM OKA had no effect on the cotransport-mediated Cl- influx when axons were dialyzed with the normal intracellular ATP concentration ([ATP]i = 4 mM). Reduction of [ATP] to 50 microM resulted in a significant decrease of the bumetanide-sensitive CL- influx, which could be partially reversed by OKA treatment. Similarly, in ATP-limited axons with [Cl-]i at 150 mM, cotransporter influx was partially stimulated by treatment with OKA. However, axons dialyzed with 300 mM [Cl-]i ([ATP]i = 50 microM) had no measurable cotransport influx, nor was subsequent treatment with OKA able to induce a cotransport-mediated Cl- influx. We conclude that the inhibition of cotransport caused by Cli- is not the result of an increase in the OKA-sensitive protein phosphatase activity.

1990 ◽  
Vol 258 (4) ◽  
pp. C749-C753 ◽  
Author(s):  
G. E. Breitwieser ◽  
A. A. Altamirano ◽  
J. M. Russell

The effects of increasing extracellular osmolality on unidirectional Cl- fluxes through the Na(+)-K(+)-Cl- cotransporter were studied in internally dialyzed squid giant axons. Hyperosmotic seawater stimulated bumetanide-sensitive Cl-influx at 150 mM intracellular Cl- concentration ([Cl-]i), whereas Cl- efflux was unaffected under comparable ionic conditions. Stimulation of bumetanide-sensitive Cl- influx was proportional to the increase in extracellular osmolality. Bumetanide-sensitive Cl- influx began to increase after a latency of approximately 20 min after a stepwise increase of extracellular osmolality and continued to increase for at least 70 min. The increased bumetanide-sensitive Cl- influx measured after 65 min of exposure to hyperosmotic external fluid was a function of the intracellular Cl- concentration; stimulation by hyperosmotic external fluids was observed at physiological [Cl-]i levels (greater than 100 mM) but not at lower [Cl-]i levels. Under both normo- and hyperosmotic conditions, intracellular Cl- inhibited Na(+)-K(+)-Cl- cotransport influx in a concentration-dependent manner. However, in hyperosmotic seawater, the dose dependence of inhibition by intracellular Cl- was shifted to higher [Cl-]i values. Therefore, we conclude that hyperosmotic extracellular fluids stimulate influx via the Na(+)-K(+)-Cl- cotransport by resetting the relation between [Cl-]i and transport activity.


1998 ◽  
Vol 275 (5) ◽  
pp. F664-F670 ◽  
Author(s):  
Chun Sik Park ◽  
Mi Hyun Kim ◽  
Chae Hun Leem ◽  
Yeon Jin Jang ◽  
Hae Won Kim ◽  
...  

We have recently shown that several putative selective inhibitors of Ca2+-calmodulin-dependent myosin light chain kinase (MLCK), such as ML-9 [1-(5-chloronaphthalene-1-sulfonyl)-1H-hexahydro-1,4-diazepine], reversibly stimulate renin secretion [C. S. Park, S.-H. Chang, H. S. Lee, S.-H. Kim, J. W. Chang, and C. D. Hong. Am. J. Physiol. 271 ( Cell Physiol. 40): C242–C247, 1996]. We hypothesized that Ca2+ inhibits renin secretion, via phosphorylation of 20-kDa myosin light chain (MLC20), by activating MLCK. In the present studies, we have investigated the types of protein phosphatase (PP) involved in the control of renin secretion through inhibition of MLC dephosphorylation using inhibitors of various types of serine/threonine-specific protein phosphatases. Cyclosporin A, a putative inhibitor of PP type 2 (calcineurin), was without effect. Calyculin A and okadaic acid, putative selective inhibitors of both PP type 1 (PP1) and type 2A (PP2A), significantly inhibited renin secretion under control conditions. Calyculin A had inhibitory effects at least 10-fold more potent than okadaic acid, suggesting that PP1, rather than PP2A, is involved in the control of renin secretion. Furthermore, calyculin A blocked the reversal of renin secretion preinhibited by raised intracellular Ca2+ concentrations in a concentration-dependent manner. Calyculin A (10−6 M) significantly inhibited renin secretion stimulated by lowering intracellular Ca2+ concentrations and blocked the stimulatory effect of ML-9 on renin secretion. Taking all of these results into consideration, we hypothesize that dephosphorylation of MLC20 by Ca2+-independent PP1 stimulates renin secretion, whereas phosphorylation of MLC20 by Ca2+-calmodulin-dependent MLCK inhibits it. This hypothesized regulatory model of renin secretion predicts that the rate of renin secretion at a given time is determined by the ratio of phosphorylated to dephosphorylated MLC20, which is, in turn, determined by the dynamic balance between activity of MLCK and MLC phosphatase.


1991 ◽  
Vol 275 (1) ◽  
pp. 233-239 ◽  
Author(s):  
A Takai ◽  
G Mieskes

The phosphatase activities of type 2A, type 1 and type 2C protein phosphatase preparations were measured against p-nitrophenyl phosphate (pNPP), a commonly used substrate for alkaline phosphatases. Of the three types of phosphatase examined, the type 2A phosphatase exhibited an especially high pNPP phosphatase activity (119 +/- 8 mumol/min per mg of protein; n = 4). This activity was strongly inhibited by pico- to nano-molar concentrations of okadaic acid, a potent inhibitor of type 2A and type 1 protein phosphatases that has been shown to have no effect on alkaline phosphatases. The dose-inhibition relationship was markedly shifted to the right and became steeper by increasing the concentration of the enzyme, as predicted by the kinetic theory for tightly binding inhibitors. The enzyme concentration estimated by titration with okadaic acid agreed well with that calculated from the protein content and the molecular mass for type 2A phosphatase. These results strongly support the idea that the pNPP phosphatase activity is intrinsic to type 2A protein phosphatase and is not due to contamination by alkaline phosphatases. pNPP was also dephosphorylated, but at much lower rates, by type 1 phosphatase (6.4 +/- 8 nmol/min per mg of protein; n = 4) and type 2C phosphatase (1.2 +/- 3 nmol/min per mg of protein; n = 4). The pNPP phosphatase activity of the type 1 phosphatase preparation shows a susceptibility to okadaic acid similar to that of its protein phosphatase activity, whereas it was interestingly very resistant to inhibitor 2, an endogenous inhibitory factor of type 1 protein phosphatase. The pNPP phosphatase activity of type 2C phosphatase preparation was not affected by up to 10 microM-okadaic acid.


2006 ◽  
Vol 104 (4) ◽  
pp. 763-769 ◽  
Author(s):  
Seth Kingston ◽  
Limin Mao ◽  
Lu Yang ◽  
Anish Arora ◽  
Eugene E. Fibuch ◽  
...  

Background Anesthetics may interact with ionotropic glutamate receptors to produce some of their biologic actions. Cellular studies reveal that the ionotropic glutamate receptors, N-methyl-D-aspartate receptors (NMDARs), can be phosphorylated on their NR1 subunits at the C-terminal serine residues, which is a major mechanism for the regulation of NMDAR functions. It is currently unknown whether anesthetics have any modulatory effects on NMDAR NR1 subunit phosphorylation. Methods The possible effect of a general anesthetic propofol on phosphorylation of NR1 subunits at serine 897 (pNR1S897) and 896 (pNR1S896) was detected in cultured rat cortical neurons. Results Propofol consistently reduced basal levels of pNR1S897 and pNR1S896 in a concentration-dependent manner. This reduction was rapid as the reliable reduction of pNR1S896 developed 1 min after propofol administration. Pretreatment of cultures with the protein phosphatase 2A inhibitors okadaic acid or calyculin A blocked the effect of propofol on the NR1 phosphorylation, whereas okadaic acid or calyculin A alone did not alter basal pNR1S897 and pNR1S896 levels. In addition, propofol decreased tyrosine phosphorylation of protein phosphatase 2A at tyrosine 307, resulting in an increase in protein phosphatase 2A activity. In the presence of propofol, the NMDAR agonist-induced intracellular Ca2+ increase was impaired in neurons with dephosphorylated NR1 subunits. Conclusions Together, these data indicate an inhibitory effect of a general anesthetic propofol on NMDAR NR1 subunit phosphorylation in neurons. This inhibition was mediated through a signaling mechanism involving activation of protein phosphatase 2A.


FEBS Letters ◽  
1993 ◽  
Vol 331 (3) ◽  
pp. 291-295 ◽  
Author(s):  
Keith A. Oxenrider ◽  
Madeline E. Rasche ◽  
Marc V. Thorsteinsson ◽  
Peter J. Kennelly

Sign in / Sign up

Export Citation Format

Share Document