Osmotic stimulation of Na(+)-K(+)-Cl- cotransport in squid giant axon is [Cl-]i dependent

1990 ◽  
Vol 258 (4) ◽  
pp. C749-C753 ◽  
Author(s):  
G. E. Breitwieser ◽  
A. A. Altamirano ◽  
J. M. Russell

The effects of increasing extracellular osmolality on unidirectional Cl- fluxes through the Na(+)-K(+)-Cl- cotransporter were studied in internally dialyzed squid giant axons. Hyperosmotic seawater stimulated bumetanide-sensitive Cl-influx at 150 mM intracellular Cl- concentration ([Cl-]i), whereas Cl- efflux was unaffected under comparable ionic conditions. Stimulation of bumetanide-sensitive Cl- influx was proportional to the increase in extracellular osmolality. Bumetanide-sensitive Cl- influx began to increase after a latency of approximately 20 min after a stepwise increase of extracellular osmolality and continued to increase for at least 70 min. The increased bumetanide-sensitive Cl- influx measured after 65 min of exposure to hyperosmotic external fluid was a function of the intracellular Cl- concentration; stimulation by hyperosmotic external fluids was observed at physiological [Cl-]i levels (greater than 100 mM) but not at lower [Cl-]i levels. Under both normo- and hyperosmotic conditions, intracellular Cl- inhibited Na(+)-K(+)-Cl- cotransport influx in a concentration-dependent manner. However, in hyperosmotic seawater, the dose dependence of inhibition by intracellular Cl- was shifted to higher [Cl-]i values. Therefore, we conclude that hyperosmotic extracellular fluids stimulate influx via the Na(+)-K(+)-Cl- cotransport by resetting the relation between [Cl-]i and transport activity.

1998 ◽  
Vol 275 (2) ◽  
pp. E272-E277 ◽  
Author(s):  
Xiaoli Chen ◽  
Ellen G. McMahon ◽  
Eric A. Gulve

Lithium has been shown to increase glucose uptake in skeletal muscle and adipose tissues. The therapeutic effect of lithium on bipolar disease is thought to be mediated by its inhibitory effect on myo-inositol-1-monophosphatase (IMPase). We tested the hypothesis that the stimulatory effect of lithium on glucose uptake results from inhibition of IMPase and the resultant accumulation of inositol monophosphates (IP1) by comparing the effects of lithium and a selective IMPase inhibitor, L-690,488, on isolated rat adipocytes. Insulin produced a concentration-dependent stimulation of 2-deoxy-d-[14C]glucose (2-DG) transport (10 μU/ml caused half-maximal activation). Acute exposure to lithium stimulated basal glucose transport activity in a concentration-dependent manner, with a threefold stimulation at 30 mM lithium. Lithium also potentiated insulin-stimulated 2-DG transport. Lithium produced a concomitant increase in IP1 accumulation. In contrast, L-690,488 increased IP1 to levels comparable to those of lithium without stimulatory effects on 2-DG transport. These results demonstrate that stimulatory effects of lithium on glucose transport are not mediated by the inhibition of IMPase and subsequent accumulation of IP1 in rat adipocytes.


1995 ◽  
Vol 269 (4) ◽  
pp. C878-C883 ◽  
Author(s):  
A. A. Altamirano ◽  
G. E. Breitwieser ◽  
J. M. Russell

The Na(+)-K(+)-Cl- cotransporter of the squid giant axon requires ATP and is inhibited by intracellular Cl- (Cli-) in a concentration-dependent manner ([Cl-]i > or = 200 mM completely inhibits the cotransporter). In the present study we address the question of whether inhibition of cotransport by Cli- is due to a Cl(i-)-induced increase of protein phosphatase activity. Intracellular dialysis was used to apply the phosphatase inhibitor okadaic acid (OKA) under conditions of [Cl-]i at 0, 150, or 300 mM during measurement of cotransporter-mediated unidirectional Cl- influx into axons. At 0 mM [Cl-]i, the application of 250 nM OKA had no effect on the cotransport-mediated Cl- influx when axons were dialyzed with the normal intracellular ATP concentration ([ATP]i = 4 mM). Reduction of [ATP] to 50 microM resulted in a significant decrease of the bumetanide-sensitive CL- influx, which could be partially reversed by OKA treatment. Similarly, in ATP-limited axons with [Cl-]i at 150 mM, cotransporter influx was partially stimulated by treatment with OKA. However, axons dialyzed with 300 mM [Cl-]i ([ATP]i = 50 microM) had no measurable cotransport influx, nor was subsequent treatment with OKA able to induce a cotransport-mediated Cl- influx. We conclude that the inhibition of cotransport caused by Cli- is not the result of an increase in the OKA-sensitive protein phosphatase activity.


1990 ◽  
Vol 259 (4) ◽  
pp. H1032-H1037 ◽  
Author(s):  
T. Matsuki ◽  
T. Ohhashi

Ring strips of monkey pulmonary veins precontracted with a high concentration of prostaglandin F2 alpha (PGF2 alpha) relaxed in a concentration-dependent manner in response to histamine. Treatment with mepyramine and/or famotidine attenuated the relaxation. 2-Pyridylethylamine (2PEA) and dimaprit caused relaxations in the precontracted preparations, which were inhibited by pretreatment with mepyramine and famotidine, respectively. Removal of endothelium reversed the histamine- and 2PEA-induced relaxations to dose-related contractions. On the other hand, the removal had no effect on the dimaprit-induced relaxations, which were significantly reduced by pretreatment with famotidine. Histamine-induced relaxations in the precontracted strips with endothelium in the presence and absence of famotidine were suppressed or abolished by treatment with methylene blue or hemoglobin but were unaffected by aspirin. It may be concluded that histamine-induced relaxation in monkey pulmonary veins precontracted with PGF2 alpha is mediated by H2-receptors in smooth muscle and H1-receptors in endothelium. Also, stimulation of the endothelial H1-receptors liberates an endothelium-derived relaxing factor.


1985 ◽  
Vol 116 (1) ◽  
pp. 1-25 ◽  
Author(s):  
P. A. Kerfoot ◽  
G. O. Mackie ◽  
R. W. Meech ◽  
A. Roberts ◽  
C. L. Singla

In the jellyfish Aglantha digitale escape swimming is mediated by the nearly synchronous activity of eight giant motor axons which make direct synaptic contact with contractile myoepithelial cells on the under-surface of the body wall. The delay in transmission at these synapses was 0.7 +/− 0.1 ms (+/− S.D.;N = 6) at 12 degrees C as measured from intracellular records. Transmission depended on the presence of Ca2+ in the bathing medium. It was not blocked by increasing the level of Mg2+ to 127 mmol l-1. The myoepithelium is a thin sheet of electrically coupled cells and injection of current at one point was found to depolarize the surrounding cells. The potential change declined with distance from the current source as expected for two-dimensional current spread. The two-dimensional space constant (lambda) was 770 micron for current flow in the circular direction and 177 micron for radial flow. The internal resistance of the epithelium (178–201 omega cm) and the membrane time constant (5–10 ms) were direction independent. No propagated epithelial action potentials were observed. Spontaneous miniature synaptic potentials of similar amplitude and rise-time were recorded intracellularly at distances of up to 1 mm from the motor giant axon. Ultrastructural evidence confirms that neuro-myoepithelial synapses also occur away from the giant axons. It is likely that synaptic sites are widespread in the myoepithelium, probably associated with the lateral motor neurones as well as the giant axons. Local stimulation of lateral motor neurones generally produced contraction in distinct fields. We suppose that stimulation of a single motor giant axon excites a whole population of lateral motor neurones and hence a broad area of the myoepithelium.


1996 ◽  
Vol 51 (3-4) ◽  
pp. 179-184 ◽  
Author(s):  
Surendra Chandra Sabat

Abstract The inhibitory effects of copper ion (Cu2+) on the photosynthetic electron transport func­tion was investigated both in NaCl washed (depleted in 17 and 23 kDa polypeptides) and native (unwashed) photosystem II membrane preparations from spinach (Beta vulgaris) chlo-roplasts. Copper in the range of 2.0 to 15 μᴍ strongly inhibited the electron flow from water to 2,6-dichlorobenzoquinone in NaCl washed particles in a concentration dependent manner. Com plete inhibition was noticed at 15 μᴍ Cu2+. Oppositely in native membranes, 15 μᴍ C u2+ inhibited only 10-12% of control activity. It was found that calcium ion (Ca2+) significantly reduced the Cu2+ inhibition of electron transport activity. The Ca2+ supported prevention of Cu2+ toxicity was specific to Ca2+. Further analysis indicated that both Cu2+ and Ca2+ act competitively. Since Ca2+ is known to have stimulating/stabilizing effect at the donor side of photosystem II, it is therefore suggested that Cu2+ in NaCl washed particles exerts its inhibi­tory effect(s) at the oxidizing side of photosystem stimulates/stabilizes the oxygen evolution.


1989 ◽  
Vol 257 (4) ◽  
pp. C607-C611 ◽  
Author(s):  
A. Wallnofer ◽  
C. Cauvin ◽  
T. W. Lategan ◽  
U. T. Ruegg

ATP stimulated 45Ca2+ influx in rat aortic smooth muscle cells in a concentration-dependent manner (EC50 = 3.6 +/- 0.5 X 10(-7) M). ADP and GTP were less effective than ATP in stimulating 45Ca2+ influx; AMP was weakly active and the adenosine agonist 5'-(N-ethyl-carboxamido)-adenosine (NECA) had no effect. ATP gamma S was about equieffective with ATP, whereas alpha,beta-methylene-ATP (APCPP) did not induce 45Ca2+ influx. Stimulation of 45Ca2+ influx by ATP was not abolished by the dihydropyridine Ca2+ channel antagonist darodipine (PY 108-068), which completely blocked depolarization-induced 45Ca2+ influx. Inorganic cations (La3+, Cd2+, Co2+, Ni2+, Mn2+, and Mg2+) were able to inhibit both agonist- and depolarization-induced 45Ca2+ influx. Cd2+, however, was approximately 20 times more selective in blocking K+-stimulated than agonist-stimulated 45Ca2+ influx. These data indicate that ATP-stimulated Ca2+ influx in rat aortic smooth muscle cells is resistant to darodipine but is reduced by La3+, Cd2+, and other inorganic blockers of Ca2+ channels.


1992 ◽  
Vol 263 (6) ◽  
pp. F1020-F1025 ◽  
Author(s):  
R. M. Edwards ◽  
M. Pullen ◽  
P. Nambi

The effects of endothelins (ET) on guanosine 3',5'-cyclic monophosphate (cGMP) levels in intact rat glomeruli were examined. ET-3 produced a rapid approximately fivefold increase in cGMP levels with the maximum effect occurring at 1 min. The ET-3-induced increase in cGMP accumulation occurred in the absence and presence of 3-isobutyl-1-methylxanthine. ET-1, ET-2, ET-3, and the structurally related toxin, sarafotoxin S6c, all increased glomerular cGMP levels in a concentration-dependent manner and with similar potencies (EC50 approximately 15-30 nM). The L-arginine analogue, N omega-nitro-L-arginine (L-NNA), reduced basal levels of cGMP and also totally inhibited ET-induced increases in cGMP as did methylene blue, an inhibitor of soluble guanylate cyclase. The effect of L-NNA was attenuated by L-arginine but not by D-arginine. The stimulation of cGMP accumulation by ET-3 was dependent on extracellular Ca2+ and was additive to atriopeptin III but not to acetylcholine. The ETA-selective antagonist, BQ 123, had no effect on ET-3-induced formation of cGMP. Glomerular membranes displayed high-affinity (Kd = 130-150 pM) and high-density (approximately 2.0 pmol/mg) binding sites for 125I-ET-1 and 125I-ET-3. ET-1, ET-3, and sarafotoxin S6c displaced 125I-ET-1 binding to glomerular membranes with similar affinities. BQ 123 had no effect on 125I-ET-1 binding. We conclude that ET increases cGMP levels in glomeruli by stimulating the formation of a nitric oxide-like factor that activates soluble guanylate cyclase. This effect of ET appears to be mediated by activation of ETB receptors and may serve to modulate the contractile effects of ET.


1990 ◽  
Vol 259 (4) ◽  
pp. F539-F544 ◽  
Author(s):  
C. S. Park ◽  
P. S. Doh ◽  
R. E. Carraway ◽  
G. G. Chung ◽  
J. C. Fray ◽  
...  

This study investigated the cellular mechanism of stimulation of renin secretion by the loop diuretic ethacrynic acid (EA) in rabbit renal cortical slices. The diuretic rapidly stimulated renin secretion reversibly and in a concentration-dependent manner. The stimulation was independent of the presence of Na+, Cl-, Ca2+, or other loop diuretics (furosemide and bumetanide) in the incubation media, suggesting that the stimulation in vitro was not dependent on the inhibitory effect of the diuretic on Na(+)-K(+)-2Cl-cotransport. The findings do not support the macula densa hypothesis. The stimulation by the diuretic was prevented and reversed by thiols such as cysteine and dithiothreitol, which also prevented and reversed the stimulation of renin secretion by the nondiuretic sulfhydryl reagent P-chloromercuriphenyl-sulfonate (PCMPS). These results suggest that EA stimulates renin secretion in vitro via reversible chemical reactions with specific membrane sulfhydryl groups that may have no functional role in the Na(+)-K(+)-2Cl- cotransport.


1993 ◽  
Vol 264 (5) ◽  
pp. F845-F853
Author(s):  
M. M. Friedlaender ◽  
D. Jain ◽  
Z. Ahmed ◽  
D. Hart ◽  
R. L. Barnett ◽  
...  

Previous work from this laboratory has identified an endothelin (ET) type A (ETA) receptor on cultured rat renal medullary interstitial cells (RMIC), coupled to phosphatidylinositol-specific phospholipase C (PI-PLC), dihydropyridine-insensitive receptor-operated Ca2+ channels, and phospholipase A2. The current studies explored a role for ET stimulation of phosphatidylcholine-specific phospholipase D (PC-PLD) in intracellular signaling of this cell type. ET stimulated PLD activation, as measured by phosphatidic acid (PA) or phosphatidylethanol (PEt) accumulation, in a time- and concentration-dependent manner. Inhibition of diacylglycerol (DAG) kinase by ethylene glycol dioctanoate or 6-(2)4-[(4-fluorophenyl)-phenylmethylene]-1-piperadinyl]ethy l-7-methyl-5H - thiaxolo-[3,2-alpyrimidin]-5-one (R 59022) failed to blunt PA accumulation, indicating that PLD, and not DAG, was the source of PA. Inhibition of PA phosphohydrolase (PAP) by propranolol increased late accumulation of PA, suggesting that the prevailing metabolic flow was in the direction of PA to DAG. Phorbol 12-myristate 13-acetate (PMA) augmented ET-evoked PEt accumulation, whereas downregulation of protein kinase C (PKC) obviated agonist-induced PEt production. PMA augmentation of PLD activity proceeded independent of cytosolic free Ca2+ concentration. Ca2+ derived from either intracellular or extracellular sources enhanced ET-related PEt accumulation but was without effect in PKC-downregulated cells. Collectively, these observations indicate that ET stimulates PLD production in RMIC. PKC is the major regulator of this process, with Ca2+ playing a secondary, modulatory role. In addition, these data suggest that PC-PLD is coupled to the ETA receptor.


1984 ◽  
Vol 247 (5) ◽  
pp. C321-C326 ◽  
Author(s):  
M. M. Walsh-Reitz ◽  
H. N. Aithal ◽  
F. G. Toback

Accelerated kidney growth and increased tissue Na content have been observed in rats fed a K-deficient diet. These observations suggest that enhanced Na influx could mediate renal growth, a hypothesis that was tested in cultures of kidney epithelial cells of the BSC-1 line. Reduction of the K concentration in the culture medium from 5.4 to 3.2 mM augmented cell growth and induced a transient increase in the cellular content of Na and a decrease in that of K. That low-K-induced growth was Na dependent was shown by decreasing the medium Na concentration from 155 to 150 mM, which abolished the increases in both growth and cell Na content in a concentration-dependent manner. The stimulation of glyceraldehyde-3-phosphate dehydrogenase (G3PD) activity that occurs in cells exposed to low-K medium for 1 h was similarly prevented by decreasing the medium Na concentration. Thus decreased availability of extracellular Na prevented the increase in cell Na content, stimulation of G3PD activity, and accelerated growth induced by low-K medium. The hypothesis was also tested by adding vasopressin to cultures of BSC-1 cells exposed to low-K medium; the hormone prevented the increments in cell Na content, G3PD activity, and growth to the same extent as did decreased availability of extracellular Na. These results are consistent with the interpretation that transient accumulation of Na is a critical determinant of the initiation of kidney epithelial cell growth.


Sign in / Sign up

Export Citation Format

Share Document