Intracellular ADP-ribose inhibits ATP-sensitive K+ channels in rat ventricular myocytes

1996 ◽  
Vol 271 (2) ◽  
pp. C464-C468 ◽  
Author(s):  
Y. G. Kwak ◽  
S. K. Park ◽  
U. H. Kim ◽  
M. K. Han ◽  
J. S. Eun ◽  
...  

Cyclic ADP-ribose (cADPR), an NAD metabolite, has been shown to be a messenger for Ca2+ mobilization from intracellular Ca2+ stores. However, the physiological role of ADP-ribose (ADPR), another metabolite of NAD, is not known. We examined the effects of cADPR and ADPR on the ATP-sensitive K+ channel (KATP) activity in rat ventricular myocytes by use of the inside-out patch-clamp configuration. ADPR, but not cADPR, inhibited the channel activity at micromolar range with an inhibitor constant (Ki) of 38.4 microM. The Hill coefficient was 0.9. ATP inhibited the K+ channel with a Ki of 77.8 microM, and the Hill coefficient was 1.8. Single-channel conductance was not affected by ADPR. These findings strongly suggest that ADPR may act as a regulator of KATP channel activity.

1997 ◽  
Vol 272 (4) ◽  
pp. H1741-H1750 ◽  
Author(s):  
L. H. Xie ◽  
M. Takano ◽  
A. Noma

The ATP-sensitive K+ current (I(K,ATP)), the inward rectifier K+ current (I(K1)), and the acetylcholine-activated K+ current (I(K,ACh)) were recorded in fetal, neonatal, and adult rat ventricular myocytes using the patch-clamp technique. The density (pA/pF) of I(K1) increased from gestation day 10 through neonatal day 1 and then decreased after neonatal day 30. The density of I(K,ATP) activated maximally by metabolic inhibition changed in parallel with the I(K1) density, and the density of I(K,ATP) channel distribution was 1.3 times higher than that of I(K1) throughout the development. We failed to observe developmental changes in the single-channel conductance and the mean open time of I(K1) and I(K,ATP) channels. However, the open probability of the I(K,ATP) channel was lower in fetuses, and the sensitivity to ATP was highest in 1-day neonates. I(K,ACh) were present in the ventricle at all stages of development but at a much lower density than in atrium. The relationship between the resting membrane potential and the development of the inwardly rectifying K-channel family is discussed.


1992 ◽  
Vol 99 (5) ◽  
pp. 665-682 ◽  
Author(s):  
T Nakajima ◽  
T Sugimoto ◽  
Y Kurachi

The effects of various intracellular anions on the G protein (GK)-mediated activation of the muscarinic K+ (KACh) channel were examined in single atrial myocytes isolated from guinea pig hearts. The patch clamp technique was used in the inside-out patch configuration. With acetylcholine (ACh, 0.5 microM) in the pipette, 1 microM GTP caused different magnitudes of KACh channel activation in internal solutions containing different anions. The order of potency of anions to induce the KACh channel activity at 0.5 microM ACh and 1 microM GTP was Cl- greater than or equal to Br- greater than 1-. In the SO4(2-) or aspartic acid internal solution, no channel openings were induced by 1 microM GTP with 0.5 microM ACh. In both the Cl- and SO4(2-) internal solutions (with 0.5 microM ACh) the relationship between the concentration of GTP and the channel activity was fit by the Hill equation with a Hill coefficient of approximately 3-4. However, the concentration of GTP at the half-maximal activation (Kd) was 0.2 microM in the Cl- and 10 microM in the SO4(2-) solution. On the other hand, the quasi-steady-state relationship between the concentration of guanosine-5'-o-(3-thiotriphosphate) and the channel activity did not differ significantly between the Cl- and SO4(2-) solutions; i.e., the Hill coefficient was approximately 3-4 and the Kd was approximately 0.06-0.08 microM in both solutions. The decay of channel activity after washout of GTP in the Cl- solution was much slower than that in the SO4(2-) solution. These results suggest that intracellular Cl- does not affect the turn-on reaction but slows the turn-off reaction of GK, resulting in higher sensitivity of the KACh channel for GTP. In the Cl- solution, even in the absence of agonists, GTP (greater than 1 microM) or ATP (greater than 1 mM) alone caused activation of the KACh channel, while neither occurred in the SO4(2-) solution. These observations suggest that the activation of the KACh channel by the basal turn-on reaction of GK or by phosphate transfer to GK by nucleoside diphosphate-kinase may depend at least partly on the intracellular concentration of Cl-.


1994 ◽  
Vol 266 (5) ◽  
pp. H1812-H1821 ◽  
Author(s):  
S. Koumi ◽  
J. A. Wasserstrom

Acetylcholine (ACh) is known to increase K+ conductance in the atrium and in pacemaker tissues in the heart. This effect has not been well defined in mammalian ventricular tissues. We have identified and characterized the ACh-sensitive muscarinic K+ channel [IK(ACh)] activity in isolated human, cat, and guinea pig ventricular myocytes using the patch-clamp technique. Application of ACh increased whole cell membrane current in human ventricular myocytes. Current-voltage relationship of the ACh-induced current in ventricle exhibited inward-rectification whose slope conductance was smaller than that in atrium. In single-channel recording from cell-attached patches, IK(ACh) activity was observed when ACh was included in the solution. The channel exhibited a slope conductance of 43 +/- 2 pS. Open times were distributed according to a single exponential function with mean open lifetime of 1.8 +/- 0.3 ms. The channel had conductance and kinetic characteristics similar to human atrial IK(ACh), which had a slope conductance of 43 +/- 3 pS and mean open lifetime of 1.6 +/- 0.3 ms. However, concentration of ACh at half-maximal stimulation (KD) of the channel in ventricle was greater (KD = 0.13 microM) than that in atrium (KD = 0.03 microM). Adenosine caused activation of the same K+ channel. After formation of an excised inside-out patch, channel activity disappeared. Application of GTP (100 microM) or GTP gamma S (100 microM) to the solution caused reactivation of the channel. When myocytes were preincubated with pertussis toxin (PTX), ACh failed to activate these channels, indicating that the PTX-sensitive G protein, Gi, is essential for activation of IK(ACh). IK(ACh) channel activity was also found in cat and guinea pig ventricular myocytes. We conclude that ACh directly activates the IK(ACh) in mammalian ventricular myocytes via Gi in a fashion almost identical to atrial myocytes.


1988 ◽  
Vol 92 (1) ◽  
pp. 67-86 ◽  
Author(s):  
A Oberhauser ◽  
O Alvarez ◽  
R Latorre

Several divalent cations were studied as agonists of a Ca2+-activated K+ channel obtained from rat muscle membranes and incorporated into planar lipid bilayers. The effect of these agonists on single-channel currents was tested in the absence and in the presence of Ca2+. Among the divalent cations that activate the channel, Ca2+ is the most effective, followed by Cd2+, Sr2+, Mn2+, Fe2+, and Co2+. Mg2+, Ni2+, Ba2+, Cu2+, Zn2+, Hg2+, and Sn2+ are ineffective. The voltage dependence of channel activation is the same for all the divalent cations. The time-averaged probability of the open state is a sigmoidal function of the divalent cation concentration. The sigmoidal curves are described by a dissociation constant K and a Hill coefficient N. The values of these parameters, measured at 80 mV are: N = 2.1, K = 4 X 10(-7) mMN for Ca2+; N = 3.0, K = 0.02 mMN for Cd2+; N = 1.45, K = 0.63 mMN for Sr2+; N = 1.7, K = 0.94 mMN for Mn2+; N = 1.1, K = 3.0 mMN for Fe2+; and N = 1.1 K = 4.35 mMN for Co2+. In the presence of Ca2+, the divalent cations Cd2+, Co2+, Mn2+, Ni2+, and Mg2+ are able to increase the apparent affinity of the channel for Ca2+ and they increase the Hill coefficient in a concentration-dependent fashion. These divalent cations are only effective when added to the cytoplasmic side of the channel. We suggest that these divalent cations can bind to the channel, unmasking new Ca2+ sites.


1998 ◽  
Vol 111 (2) ◽  
pp. 363-379 ◽  
Author(s):  
Izumi Sugihara

Effects of internal Sr2+ on the activity of large-conductance Ca2+-activated K+ channels were studied in inside-out membrane patches from goldfish saccular hair cells. Sr2+ was approximately one-fourth as potent as Ca2+ in activating these channels. Although the Hill coefficient for Sr2+ was smaller than that for Ca2+, maximum open-state probability, voltage dependence, steady state gating kinetics, and time courses of activation and deactivation of the channel were very similar under the presence of equipotent concentrations of Ca2+ and Sr2+. This suggests that voltage-dependent activation is partially independent of the ligand. Internal Sr2+ at higher concentrations (>100 μM) produced fast and slow blockade both concentration and voltage dependently. The reduction in single-channel amplitude (fast blockade) could be fitted with a modified Woodhull equation that incorporated the Hill coefficient. The dissociation constant at 0 mV, the Hill coefficient, and zd (a product of the charge of the blocking ion and the fraction of the voltage difference at the binding site from the inside) in this equation were 58–209 mM, 0.69–0.75, 0.45–0.51, respectively (n = 4). Long shut events (slow blockade) produced by Sr2+ lasted ∼10–200 ms and could be fitted with single-exponential curves (time constant, τl−s) in shut-time histograms. Durations of burst events, periods intercalated by long shut events, could also be fitted with single exponentials (time constant, τb). A significant decrease in τb and no large changes in τl−s were observed with increased Sr2+ concentration and voltage. These findings on slow blockade could be approximated by a model in which single Sr2+ ions bind to a blocking site within the channel pore beyond the energy barrier from the inside, as proposed for Ba2+ blockade. The dissociation constant at 0 mV and zd in the Woodhull equation for this model were 36–150 mM and 1–1.8, respectively (n = 3).


2006 ◽  
Vol 127 (2) ◽  
pp. 159-169 ◽  
Author(s):  
Jill Thompson ◽  
Ted Begenisich

The complexity of mammalian physiology requires a diverse array of ion channel proteins. This diversity extends even to a single family of channels. For example, the family of Ca2+-activated K channels contains three structural subfamilies characterized by small, intermediate, and large single channel conductances. Many cells and tissues, including neurons, vascular smooth muscle, endothelial cells, macrophages, and salivary glands express more than a single class of these channels, raising questions about their specific physiological roles. We demonstrate here a novel interaction between two types of Ca2+-activated K channels: maxi-K channels, encoded by the KCa1.1 gene, and IK1 channels (KCa3.1). In both native parotid acinar cells and in a heterologous expression system, activation of IK1 channels inhibits maxi-K activity. This interaction was independent of the mode of activation of the IK1 channels: direct application of Ca2+, muscarinic receptor stimulation, or by direct chemical activation of the IK1 channels. The IK1-induced inhibition of maxi-K activity occurred in small, cell-free membrane patches and was due to a reduction in the maxi-K channel open probability and not to a change in the single channel current level. These data suggest that IK1 channels inhibit maxi-K channel activity via a direct, membrane-delimited interaction between the channel proteins. A quantitative analysis indicates that each maxi-K channel may be surrounded by four IK1 channels and will be inhibited if any one of these IK1 channels opens. This novel, regulated inhibition of maxi-K channels by activation of IK1 adds to the complexity of the properties of these Ca2+-activated K channels and likely contributes to the diversity of their functional roles.


1989 ◽  
Vol 94 (4) ◽  
pp. 693-717 ◽  
Author(s):  
B Ribalet ◽  
S Ciani ◽  
G T Eddlestone

The single-channel recording technique was employed to investigate the mechanism conferring ATP sensitivity to a metabolite-sensitive K channel in insulin-secreting cells. ATP stimulated channel activity in the 0-10 microM range, but depressed it at higher concentrations. In inside-out patches, addition of the cAMP-dependent protein kinase inhibitor (PKI) reduced channel activity, suggesting that the stimulatory effect of ATP occurs via cAMP-dependent protein kinase-mediated phosphorylation. Raising ATP between 10 and 500 microM in the presence of exogenous PKI progressively reduced the channel activity; it is proposed that this inactivation results from a reduction in kinase activity owing to an ATP-dependent binding of PKI or a protein with similar inhibitory properties to the kinase. A model describing the effects of ATP was developed, incorporating these two separate roles for the nucleotide. Assuming that the efficacy of ATP in controlling the channel activity depends upon the relative concentrations of inhibitor and catalytic subunit associated with the membrane, our model predicts that the channel sensitivity to ATP will vary when the ratio of these two modulators is altered. Based upon this, it is shown that the apparent discrepancy existing between the sensitivity of the channel to low ATP concentrations in the excised patch and the elevated intracellular level of ATP may be explained by postulating a change in the inhibitor/kinase ratio from 1:1 to 3:2 owing to the loss of protein kinase after patch excision. At a low concentration of ATP (10-20 microM), a nonhydrolyzable ATP analogue, AMP-PNP, enhanced the channel activity when present below 10 microM, whereas the analogue blocked the channel activity at higher concentrations. It is postulated that AMP-PNP inhibits the formation of the kinase-inhibitor complex in the former case, and prevents phosphate transfer in the latter. A similar mechanism would explain the interaction between ATP and ADP which is characterized by enhanced activity at low ADP concentrations and blocking at higher concentrations.


2004 ◽  
Vol 287 (4) ◽  
pp. H1721-H1729 ◽  
Author(s):  
Koji Miyazaki ◽  
Satoshi Komatsu ◽  
Mitsuo Ikebe ◽  
Richard A. Fenton ◽  
James G. Dobson

Adenosine-induced antiadrenergic effects in the heart are mediated by adenosine A1 receptors (A1R). The role of PKCε in the antiadrenergic action of adenosine was explored with adult rat ventricular myocytes in which PKCε was overexpressed. Myocytes were transfected with a pEGFP-N1 vector in the presence or absence of a PKCε construct and compared with normal myocytes. The extent of myocyte shortening elicited by electrical stimulation of quiescent normal and transfected myocytes was recorded with video imaging. PKCε was found localized primarily in transverse tubules. The A1R agonist chlorocyclopentyladenosine (CCPA) at 1 μM rendered an enhanced localization of PKCε in the t-tubular system. The β-adrenergic agonist isoproterenol (Iso; 0.4 μM) elicited a 29–36% increase in myocyte shortening in all three groups. Although CCPA significantly reduced the Iso-produced increase in shortening in all three groups, the reduction caused by CCPA was greatest with PKCε overexpression. The CCPA reduction of the Iso-elicited shortening was eliminated in the presence of a PKCε inhibitory peptide. These results suggest that the translocation of PKCε to the t-tubular system plays an important role in A1R-mediated antiadrenergic actions in the heart.


Sign in / Sign up

Export Citation Format

Share Document