Activators of protein kinase C decrease Ca2+ spark frequency in smooth muscle cells from cerebral arteries

1997 ◽  
Vol 273 (6) ◽  
pp. C2090-C2095 ◽  
Author(s):  
Adrian D. Bonev ◽  
Jonathan H. Jaggar ◽  
Michael Rubart ◽  
Mark T. Nelson

Local Ca2+ transients (“Ca2+ sparks”) caused by the opening of one or the coordinated opening of a number of tightly clustered ryanodine-sensitive Ca2+-release (RyR) channels in the sarcoplasmic reticulum (SR) activate nearby Ca2+-dependent K+(KCa) channels to cause an outward current [referred to as a “spontaneous transient outward current” (STOC)]. These KCa currents cause membrane potential hyperpolarization of arterial myocytes, which would lead to vasodilation through decreasing Ca2+ entry through voltage-dependent Ca2+ channels. Therefore, modulation of Ca2+spark frequency should be a means to regulation of KCa channel currents and hence membrane potential. We examined the frequency modulation of Ca2+ sparks and STOCs by activation of protein kinase C (PKC). The PKC activators, phorbol 12-myristate 13-acetate (PMA; 10 nM) and 1,2-dioctanoyl- sn-glycerol (1 μM), decreased Ca2+ spark frequency by 72% and 60%, respectively, and PMA reduced STOC frequency by 83%. PMA also decreased STOC amplitude by 22%, which could be explained by an observed reduction (29%) in KCa channel open probability in the absence of Ca2+ sparks. The reduction in STOC frequency occurred in the presence of an inorganic blocker (Cd2+) of voltage-dependent Ca2+ channels. The reduction in Ca2+ spark frequency did not result from SR Ca2+ depletion, since caffeine-induced Ca2+ transients did not decrease in the presence of PMA. These results suggest that activators of PKC can modulate the frequency of Ca2+ sparks, through an effect on the RyR channel, which would decrease STOC frequency (i.e., KCa channel activity).

1999 ◽  
Vol 277 (3) ◽  
pp. H1178-H1188 ◽  
Author(s):  
Natalia I. Gokina ◽  
Harm J. Knot ◽  
Mark T. Nelson ◽  
George Osol

The effects of activating protein kinase C (PKC) with indolactam V (Indo-V) and 1,2-dioctanoyl- sn-glycerol (DOG) on smooth muscle intracellular Ca2+concentrations ([Ca2+]i) and arterial diameter were determined using ratiometric Ca2+ imaging and video edge detection of pressurized rat posterior cerebral arteries. Elevation of intraluminal pressure from 10 to 60 mmHg resulted in an increase in [Ca2+]ifrom 74 ± 5 to 219 ± 8 nM and myogenic constriction. Application of Indo-V (0.01–3 μM) or DOG (0.1–30 μM) induced constriction and decreased [Ca2+]ito 140 ± 11 and 127 ± 12 nM, respectively, at the highest concentrations used. In the presence of Indo-V, the dihydropyridine Ca2+-channel-blocker nisoldipine produced nearly maximum dilation and decreased [Ca2+]ito 97 ± 7 nM. In α-toxin-permeabilized arteries, the constrictor effects of Indo-V and DOG were not observed in the absence of Ca2+. Both PKC activators significantly increased the degree of constriction of permeabilized arteries at different [Ca2+]i. We conclude that 1) Indo-V- or DOG-induced constriction of pressurized arteries requires Ca2+ influx through voltage-dependent Ca2+ channels, and 2) PKC-induced constriction of pressurized rat cerebral arteries is associated with a decrease in [Ca2+]i, suggesting an increase in the Ca2+sensitivity of the contractile process.


1987 ◽  
Vol 89 (2) ◽  
pp. 185-213 ◽  
Author(s):  
S Grinstein ◽  
S Cohen

The effect of elevating cytoplasmic Ca2+ [( Ca2+]i) on the intracellular pH (pHi) of thymic lymphocytes was investigated. In Na+-containing media, treatment of the cells with ionomycin, a divalent cation ionophore, induced a moderate cytoplasmic alkalinization. In the presence of amiloride or in Na+-free media, an acidification was observed. This acidification is at least partly due to H+ (equivalent) uptake in response to membrane hyperpolarization since: it was enhanced by pretreatment with conductive protonophores, it could be mimicked by valinomycin, and it was decreased by depolarization with K+ or gramicidin. In addition, activation of metabolic H+ production also contributes to the acidification. The alkalinization is due to Na+/H+ exchange inasmuch as it is Na+ dependent, amiloride sensitive, and accompanied by H+ efflux and net Na+ gain. A shift in the pHi dependence underlies the activation of the antiport. The effect of [Ca2+]i on Na+/H+ exchange was not associated with redistribution of protein kinase C and was also observed in cells previously depleted of this enzyme. Treatment with ionomycin induced significant cell shrinking. Prevention of shrinking largely eliminated the activation of the antiport. Moreover, a comparable shrinking produced by hypertonic media also activated the antiport. It is concluded that stimulation of Na+/H+ exchange by elevation of [Ca2+]i is due, at least in part, to cell shrinking and does not require stimulation of protein kinase C.


2012 ◽  
Vol 302 (8) ◽  
pp. C1141-C1151 ◽  
Author(s):  
Jihua Ma ◽  
Antao Luo ◽  
Lin Wu ◽  
Wei Wan ◽  
Peihua Zhang ◽  
...  

An increase in intracellular Ca2+ concentration ([Ca2+]i) augments late sodium current ( INa.L) in cardiomyocytes. This study tests the hypothesis that both Ca2+-calmodulin-dependent protein kinase II (CaMKII) and protein kinase C (PKC) mediate the effect of increased [Ca2+]i to increase INa.L. Whole cell and open cell-attached patch clamp techniques were used to record INa.L in rabbit ventricular myocytes dialyzed with solutions containing various concentrations of [Ca2+]i. Dialysis of cells with [Ca2+]i from 0.1 to 0.3, 0.6, and 1.0 μM increased INa.L in a concentration-dependent manner from 0.221 ± 0.038 to 0.554 ± 0.045 pA/pF ( n = 10, P < 0.01) and was associated with an increase in mean Na+ channel open probability and prolongation of channel mean open-time ( n = 7, P < 0.01). In the presence of 0.6 μM [Ca2+]i, KN-93 (10 μM) and bisindolylmaleimide (BIM, 2 μM) decreased INa.L by 45.2 and 54.8%, respectively. The effects of KN-93 and autocamtide-2-related inhibitory peptide II (2 μM) were not different. A combination of KN-93 and BIM completely reversed the increase in INa.L as well as the Ca2+-induced changes in Na+ channel mean open probability and mean open-time induced by 0.6 μM [Ca2+]i. Phorbol myristoyl acetate increased INa.L in myocytes dialyzed with 0.1 μM [Ca2+]i; the effect was abolished by Gö-6976. In summary, both CaMKII and PKC are involved in [Ca2+]i-mediated augmentation of INa.L in ventricular myocytes. Inhibition of CaMKII and/or PKC pathways may be a therapeutic target to reduce myocardial dysfunction and cardiac arrhythmias caused by calcium overload.


Sign in / Sign up

Export Citation Format

Share Document