Characterization of nucleoside transport systems in cultured rat epididymal epithelium

2001 ◽  
Vol 280 (5) ◽  
pp. C1076-C1082 ◽  
Author(s):  
George P. H. Leung ◽  
Jeffrey L. Ward ◽  
Patrick Y. D. Wong ◽  
Chung-Ming Tse

The nucleoside transport systems in cultured epididymal epithelium were characterized and found to be similar between the proximal (caput and corpus) and distal (cauda) regions of the epididymis. Functional studies revealed that 70% of the total nucleoside uptake was Na+ dependent, while 30% was Na+ independent. The Na+-independent nucleoside transport was mediated by both the equilibrative nitrobenzylthioinosine (NBMPR)-sensitive system (40%) and the NBMPR-insensitive system (60%), which was supported by a biphasic dose response to NBMPR inhibition. The Na+-dependent [3H]uridine uptake was selectively inhibited 80% by purine nucleosides, indicating that the purine nucleoside-selective N1 system is predominant. Since Na+-dependent [3H]guanosine uptake was inhibited by thymidine by 20% and Na+-dependent [3H]thymidine uptake was broadly inhibited by purine and pyrimidine nucleosides, this suggested the presence of the broadly selective N3 system accounting for 20% of Na+-dependent nucleoside uptake. Results of RT-PCR confirmed the presence of mRNA for equilibrative nucleoside transporter (ENT) 1, ENT2, and concentrative nucleoside transporter (CNT) 2 and the absence of CNT1. It is suggested that the nucleoside transporters in epididymis may be important for sperm maturation by regulating the extracellular concentration of adenosine in epididymal plasma.

2007 ◽  
Vol 293 (6) ◽  
pp. H3325-H3332 ◽  
Author(s):  
Derek B. J. Bone ◽  
James R. Hammond

Levels of cardiovascular active metabolites, like adenosine, are regulated by nucleoside transporters of endothelial cells. We characterized the nucleoside and nucleobase transport capabilities of primary human cardiac microvascular endothelial cells (hMVECs). hMVECs accumulated 2-[3H]chloroadenosine via the nitrobenzylmercaptopurine riboside-sensitive equilibrative nucleoside transporter 1 (ENT1) at a Vmaxof 3.4 ± 1 pmol·μl−1·s−1, with no contribution from the nitrobenzylmercaptopurine riboside-insensitive ENT2. Inhibition of 2-chloroadenosine uptake by ENT1 blockers produced monophasic inhibition curves, which are also compatible with minimal ENT2 expression. The nucleobase [3H]hypoxanthine was accumulated within hMVECs ( Km= 96 ± 37 μM; Vmax= 1.6 ± 0.3 pmol·μl−1·s−1) despite the lack of a known nucleobase transport system. This novel transporter was dipyridamole-insensitive but could be inhibited by adenine ( Ki= 19 ± 7 μM) and other purine nucleobases, including chemotherapeutic analogs. A variety of other cell types also expressed the nucleobase transporter, including the nucleoside transporter-deficient PK( 15 ) cell line (PK15NTD). Further characterization of [3H]hypoxanthine uptake in the PK15NTD cells showed no dependence on Na+or H+. PK15NTD cells expressing human ENT2 accumulated 4.5-fold more [3H]hypoxanthine in the presence of the ENT2 inhibitor dipyridamole than did PK15NTD cells or hMVECs, suggesting trapping of ENT2-permeable metabolites. Understanding the nucleoside and nucleobase transporter profiles in the vasculature will allow for further study into their roles in pathophysiological conditions such as hypoxia or ischemia.


1996 ◽  
Vol 317 (3) ◽  
pp. 835-842 ◽  
Author(s):  
Joan MERCADER ◽  
Mireia GOMEZ-ANGELATS ◽  
Belén del SANTO ◽  
Javier CASADO ◽  
Antonio F. FELIPE ◽  
...  

Rat liver parenchymal cells express Na+-dependent and Na+-independent nucleoside transport activity. The Na+-dependent component shows kinetic properties and substrate specificity similar to those reported for plasma membrane vesicles [Ruiz-Montasell, Casado, Felipe and Pastor-Anglada (1992) J. Membr. Biol. 128, 227–233]. This transport activity shows apparent Km values for uridine in the range 8–13 μM and a Vmax of 246 pmol of uridine per 3 min per 106 cells. Most nucleosides, including the analogue formycin B, cis-inhibit Na+-dependent uridine transport, although thymidine and cytidine are poor inhibitors. Inosine and adenosine inhibit Na+-dependent uridine uptake in a dose-dependent manner, reaching total inhibition. Guanosine also inhibits Na+-dependent uridine uptake, although there is some residual transport activity (35% of the control values) that is resistant to high concentrations of guanosine but may be inhibited by low concentrations of adenosine. The transport activity that is inhibited by high concentrations of thymidine is similar to the guanosine-resistant fraction. These observations are consistent with the presence of at least two Na+-dependent transport systems. Na+-dependent uridine uptake is sensitive to N-ethylmaleimide treatment, but Na+-independent transport is not. Nitrobenzylthioinosine (NBTI) stimulates Na+-dependent uridine uptake. The NBTI effect involves a change in Vmax, it is rapid, dose-dependent, does not need preincubation and can be abolished by depleting the Na+ transmembrane electrochemical gradient. Na+-independent uridine transport seems to be insensitive to NBTI. Under the same experimental conditions, NBTI effectively blocks most of the Na+-independent uridine uptake in hepatoma cells. Thus the stimulatory effect of NBTI on the concentrative nucleoside transporter of liver parenchymal cells cannot be explained by inhibition of nucleoside efflux.


1997 ◽  
Vol 328 (3) ◽  
pp. 739-743 ◽  
Author(s):  
Mark GRIFFITHS ◽  
Y. M. Sylvia YAO ◽  
Fatima ABIDI ◽  
E. V. Simon PHILLIPS ◽  
E. Carol CASS ◽  
...  

Mammalian equilibrative nucleoside transporters are typically divided into two classes, es and ei, based on their sensitivity or resistance respectively to inhibition by nitrobenzylthioinosine (NBMPR). Previously, we have reported the isolation of a cDNA clone encoding a prototypic es-type transporter, hENT1 (human equilibrative nucleoside transporter 1), from human placenta. We now report the molecular cloning and functional expression in Xenopus oocytes of a cDNA from the same tissue encoding a homologous ei-type transporter, which we designate hENT2. This 456-residue protein is 46% identical in amino acid sequence with hENT1 and corresponds to a full-length form of the delayed-early proliferative response gene product HNP36, a protein of unknown function previously cloned in a form bearing a sequence deletion. In addition to placenta, hENT2 is found in brain, heart and ovarian tissue. Like hENT1, hENT2 mediates saturable transport of the pyrimidine nucleoside uridine (Km 0.2±0.03 mM) and also transports the purine nucleoside adenosine. However, in contrast with hENT1, which is potently inhibited by NBMPR (Ki 2 nM), hENT2 is NBMPR-insensitive (IC50 < 1 μM). It is also much less sensitive to inhibition by the coronary vasoactive drugs dipyridamole and dilazep and to the lidoflazine analogue draflazine, properties that closely resemble those reported for classical ei-type transport in studies with intact cells.


2016 ◽  
Vol 8 (4) ◽  
pp. 284-295 ◽  
Author(s):  
Weiyun Huang ◽  
Xin Zeng ◽  
Yigong Shi ◽  
Minhao Liu

1998 ◽  
Vol 330 (2) ◽  
pp. 997-1001 ◽  
Author(s):  
Antonio FELIPE ◽  
Raquel VALDES ◽  
Belén del SANTO ◽  
Jorge LLOBERAS ◽  
Javier CASADO ◽  
...  

Hepatocytes show a Na+-dependent nucleoside transport activity that is kinetically heterogeneous and consistent with the expression of at least two independent concentrative Na+-coupled nucleoside transport systems (Mercader et al. Biochem. J. 317, 835-842, 1996). So far, only a single nucleoside carrier-related cDNA (SPNT) has been isolated from liver cells (Che et al. J. Biol. Chem. 270, 13596-13599, 1995). This cDNA presumably encodes a plasma membrane protein responsible for Na+-dependent purine nucleoside transport activity. Thus, the liver must express, at least, a second nucleoside transporter which should be pyrimidine-preferring. Homology cloning using RT-PCR revealed that a second isoform is indeed present in liver. This second isoform turned out to be identical to the ‘epithelial-specific isoform’ called cNT1, which shows in fact high specificity for pyrimidine nucleosides. Although cNT1 mRNA is present at lower amounts than SPNT mRNA, the amounts of cNT1 protein, when measured using isoform-specific polyclonal antibodies, were even higher than the SPNT protein levels. Moreover, partially purified basolateral plasma membrane vesicles from liver were enriched in the SPNT but not in the cNT1 protein, which suggests that the subcellular localization of these carrier proteins is different. SPNT and cNT1 protein amounts in crude membrane extracts from 6 h-regenerating rat livers are higher than in the preparations from sham-operated controls (3.5- and 2-fold, respectively). These results suggest that liver parenchymal cells express at least two different isoforms of concentrative nucleoside carriers, the cNT1 and SPNT proteins, which show differential regulation and subcellular localization.


2012 ◽  
Vol 302 (1) ◽  
pp. C257-C266 ◽  
Author(s):  
Pedro Cano-Soldado ◽  
Edurne Gorraitz ◽  
Ekaitz Errasti-Murugarren ◽  
F. Javier Casado ◽  
M. Pilar Lostao ◽  
...  

SLC28 genes, encoding concentrative nucleoside transporter proteins (CNT), show little genetic variability, although a few single nucleotide polymorphisms (SNPs) have been associated with marked functional disturbances. In particular, human CNT1S546P had been reported to result in negligible thymidine uptake. In this study we have characterized the molecular mechanisms responsible for this apparent loss of function. The hCNT1S546P variant showed an appropriate endoplasmic reticulum export and insertion into the plasma membrane, whereas loss of nucleoside translocation ability affected all tested nucleoside and nucleoside-derived drugs. Site-directed mutagenesis analysis revealed that it is the lack of the serine residue itself responsible for the loss of hCNT1 function. This serine residue is highly conserved, and mutation of the analogous serine in hCNT2 (Ser541) and hCNT3 (Ser568) resulted in total and partial loss of function, respectively. Moreover, hCNT3, the only member that shows a 2Na+/1 nucleoside stoichiometry, showed altered Na+ binding properties associated with a shift in the Hill coefficient, consistent with one Na+ binding site being affected by the mutation. Two-electrode voltage-clamp studies using the hCNT1S546P mutant revealed the occurrence of Na+ leak, which was dependent on the concentration of extracellular Na+ indicating that, although the variant is unable to transport nucleosides, there is an uncoupled sodium transport.


Biochemistry ◽  
2017 ◽  
Vol 57 (28) ◽  
pp. 4237-4237
Author(s):  
Lijie Sun ◽  
Hao Xie ◽  
Jean C. Ingram ◽  
Ryan J. Hope ◽  
Stephen A. Baldwin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document