Differential effects of UTP, ATP, and adenosine on ciliary activity of human nasal epithelial cells

2001 ◽  
Vol 280 (6) ◽  
pp. C1485-C1497 ◽  
Author(s):  
Diane M. Morse ◽  
Jennifer L. Smullen ◽  
C. William Davis

The purinergic regulation of ciliary activity was studied using small, continuously superfused explants of human nasal epithelium. The P2Y2 purinoceptor (P2Y2-R) was identified as the major purinoceptor regulating ciliary beat frequency (CBF); UTP (EC50 = 4.7 μM), ATP, and adenosine-5′- O-(3-thiotriphosphate) elicited similar maximal responses, approximately twofold over baseline. ATP, however, elicited a post-peak sustained plateau in CBF (1.83 ± 0.1-fold), whereas the post-peak CBF response to UTP declined over 15 min to a low-level plateau (1.36 ± 0.16-fold). UDP also stimulated ciliary beating, probably via P2Y6-R, with a maximal effect approximately one-half that elicited by P2Y2-R stimulation. Not indicated were P2Y1-R-, P2Y4-R-, or P2Y11-R-mediated effects. A2B-receptor agonists elicited sustained responses in CBF approximately equal to those from UTP/ATP [5′-( N-ethylcarboxamido)adenosine, EC50 = 0.09 μM; adenosine, EC50 = 0.7 μM]. Surprisingly, ADP elicited a sustained stimulation in CBF. The ADP effect and the post-peak sustained portion of the ATP response in CBF were inhibited by the A2-R antagonist 8-( p-sulfophenyl)theophylline. Hence, ATP affects ciliary activity through P2Y2-R and, after an apparent ectohydrolysis to adenosine, through A2BAR.

2020 ◽  
Vol 21 (11) ◽  
pp. 4052
Author(s):  
Makoto Yasuda ◽  
Taka-aki Inui ◽  
Shigeru Hirano ◽  
Shinji Asano ◽  
Tomonori Okazaki ◽  
...  

Small inhaled particles, which are entrapped by the mucous layer that is maintained by mucous secretion via mucin exocytosis and fluid secretion, are removed from the nasal cavity by beating cilia. The functional activities of beating cilia are assessed by their frequency and the amplitude. Nasal ciliary beating is controlled by intracellular ions (Ca2+, H+ and Cl−), and is enhanced by a decreased concentration of intracellular Cl− ([Cl−]i) in ciliated human nasal epithelial cells (cHNECs) in primary culture, which increases the ciliary beat amplitude. A novel method to measure both ciliary beat frequency (CBF) and ciliary beat distance (CBD, an index of ciliary beat amplitude) in cHNECs has been developed using high-speed video microscopy, which revealed that a decrease in [Cl−]i increased CBD, but not CBF, and an increase in [Cl−]i decreased both CBD and CBF. Thus, [Cl−]i inhibits ciliary beating in cHNECs, suggesting that axonemal structures controlling CBD and CBF may have Cl− sensors and be regulated by [Cl−]i. These observations indicate that the activation of Cl− secretion stimulates ciliary beating (increased CBD) mediated via a decrease in [Cl−]i in cHNECs. Thus, [Cl−]i is critical for controlling ciliary beating in cHNECs. This review introduces the concept of Cl− regulation of ciliary beating in cHNECs.


2018 ◽  
Vol 19 (12) ◽  
pp. 3754 ◽  
Author(s):  
Taka-aki Inui ◽  
Makoto Yasuda ◽  
Shigeru Hirano ◽  
Yukiko Ikeuchi ◽  
Haruka Kogiso ◽  
...  

The effects of the isoflavone daidzein on the ciliary beat distance (CBD, which is a parameter assessing the amplitude of ciliary beating) and the ciliary beat frequency (CBF) were examined in ciliated human nasal epithelial cells (cHNECs) in primary culture. Daidzein decreased [Cl−]i and enhanced CBD in cHNECs. The CBD increase that was stimulated by daidzein was mimicked by Cl−-free NO3− solution and bumetanide (an inhibitor of Na+/K+/2Cl− cotransport), both of which decreased [Cl−]i. Moreover, the CBD increase was inhibited by 5-Nitro-2-(3-phenylpropylamino)benzoic acid (NPPB, a Cl− channel blocker), which increased [Cl−]i. CBF was also decreased by NPPB. The rate of [Cl−]i decrease evoked by Cl−-free NO3− solution was enhanced by daidzein. These results suggest that daidzein activates Cl− channels in cHNECs. Moreover, daidzein enhanced the microbead transport driven by beating cilia in the cell sheet of cHNECs, suggesting that an increase in CBD enhances ciliary transport. An [Cl−]i decrease enhanced CBD, but not CBF, in cHNECs at 37 °C, although it enhanced both at 25 °C. Intracellular Cl− affects both CBD and CBF in a temperature-dependent manner. In conclusion, daidzein, which activates Cl− channels to decrease [Cl−]i, stimulated CBD increase in cHNECs at 37 °C. CBD is a crucial factor that can increase ciliary transport in the airways under physiological conditions.


2017 ◽  
Author(s):  
Csaba Verasztó ◽  
Nobuo Ueda ◽  
Luis A. Bezares-Calderón ◽  
Aurora Panzera ◽  
Elizabeth A. Williams ◽  
...  

AbstractCiliated surfaces harbouring synchronously beating cilia can generate fluid flow or drive locomotion. In ciliary swimmers, ciliary beating, arrests, and changes in beat frequency are often coordinated across extended or discontinuous surfaces. To understand how such coordination is achieved, we studied the ciliated larvae of Platynereis dumerilii, a marine annelid. Platynereis larvae have segmental multiciliated cells that regularly display spontaneous coordinated ciliary arrests. We used whole-body connectomics, activity imaging, transgenesis, and neuron ablation to characterize the ciliomotor circuitry. We identified cholinergic, serotonergic, and catecholaminergic ciliomotor neurons. The synchronous rhythmic activation of cholinergic cells drives the coordinated arrests of all cilia. The serotonergic cells are active when cilia are beating. Serotonin inhibits the cholinergic rhythm, and increases ciliary beat frequency. Based on their connectivity and alternating activity, the catecholaminergic cells may generate the rhythm. The ciliomotor circuitry thus constitutes a stop-and-go pacemaker system for the whole-body coordination of ciliary locomotion.


2014 ◽  
Vol 272 (2) ◽  
pp. 377-383 ◽  
Author(s):  
Richard Birk ◽  
C. Aderhold ◽  
J. Stern-Sträter ◽  
K. Hörmann ◽  
B. A. Stuck ◽  
...  

1983 ◽  
Vol 64 (4) ◽  
pp. 449-451 ◽  
Author(s):  
Chun Ka Luk ◽  
Mauricio J. Dulfano

1. Ciliary activity is significantly influenced by chemical and physical properties of the liquid medium in which the cilia beat. 2. We studied the effect of changes in pH, ionic strength and viscosity on the ciliary beat frequency (CBF) of explants of human respiratory mucosa. 3. Optimal CBF was elicited at pH 7.0-9.0, with a marked reduction of CBF outside these limits. The CBF was well preserved at NaCl concentrations between 5 g/l (80 mmol/l) and 12 g/l (200 mmol/l), but there was rapid loss at concentrations below 0.5 gA (10 mmol/l). The cilia beat best at viscosities below 1.0 centipoises (1 mN s m−2). Increase of the viscosity gradually decreases CBF with a significant drop at viscosities above 87 millipoises. 4. It is concluded that the above limits may fairly accurately indicate the actual physical characteristics of the periciliary environment (‘sol layer’) in vivo.


eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Csaba Verasztó ◽  
Nobuo Ueda ◽  
Luis A Bezares-Calderón ◽  
Aurora Panzera ◽  
Elizabeth A Williams ◽  
...  

Ciliated surfaces harbouring synchronously beating cilia can generate fluid flow or drive locomotion. In ciliary swimmers, ciliary beating, arrests, and changes in beat frequency are often coordinated across extended or discontinuous surfaces. To understand how such coordination is achieved, we studied the ciliated larvae of Platynereis dumerilii, a marine annelid. Platynereis larvae have segmental multiciliated cells that regularly display spontaneous coordinated ciliary arrests. We used whole-body connectomics, activity imaging, transgenesis, and neuron ablation to characterize the ciliomotor circuitry. We identified cholinergic, serotonergic, and catecholaminergic ciliomotor neurons. The synchronous rhythmic activation of cholinergic cells drives the coordinated arrests of all cilia. The serotonergic cells are active when cilia are beating. Serotonin inhibits the cholinergic rhythm, and increases ciliary beat frequency. Based on their connectivity and alternating activity, the catecholaminergic cells may generate the rhythm. The ciliomotor circuitry thus constitutes a stop-and-go pacemaker system for the whole-body coordination of ciliary locomotion.


1998 ◽  
Vol 275 (3) ◽  
pp. C790-C797 ◽  
Author(s):  
Alex Braiman ◽  
Orna Zagoory ◽  
Zvi Priel

The intent of this work was to evaluate the role of cAMP in regulation of ciliary activity in frog mucociliary epithelium and to examine the possibility of cross talk between the cAMP- and Ca2+-dependent pathways in that regulation. Forskolin and dibutyryl cAMP induced strong transient intracellular Ca2+ concentration ([Ca2+]i) elevation and strong ciliary beat frequency enhancement with prolonged stabilization at an elevated plateau. The response was not affected by reduction of extracellular Ca2+concentration. The elevation in [Ca2+]iwas canceled by pretreatment with 1,2-bis(2-aminophenoxy)ethane- N, N, N′, N′-tetraacetic acid-AM, thapsigargin, and a phospholipase C inhibitor, U-73122. Under those experimental conditions, forskolin raised the beat frequency to a moderately elevated plateau, whereas the initial strong rise in frequency was completely abolished. All effects were canceled by H-89, a selective protein kinase A (PKA) inhibitor. The results suggest a dual role for PKA in ciliary regulation. PKA releases Ca2+ from intracellular stores, strongly activating ciliary beating, and, concurrently, produces moderate prolonged enhancement of the beat frequency by a Ca2+-independent mechanism.


2017 ◽  
Author(s):  
M. Chioccioli ◽  
L. Feriani ◽  
J. Kotar ◽  
P. E. Bratcher ◽  
P. Cicuta

AbstractThe diagnosis and treatment of respiratory disorders are challenging and would benefit from new approaches to systematically assess ciliary beating dynamics and to test new drugs. A novel approach based on multiscale differential dynamic microscopy (multi-DDM) is shown to quantitatively assess collective beating of cilia in a non-biased automated manner, in human airway epithelial cells (HAECs) derived from subjects with cystic fibrosis (CF) and grown in 2D air-liquid interface culture. Multi-DDM can readily detect changes in both ciliary beat frequency (CBF) and cilia coordination that result from perturbations to the mucosal layer. The efficacy of three CFTR-modulating treatments is investigated: ivacaftor (VX-770) with lumacaftor (VX-809), VX-809 alone and Thymosin alpha 1 (Tα1) alone. All three treatments restore coordination of cilia beating in the CF cells, albeit to varying degrees. We argue cilia are affected by these treatments through the physical properties of the mucus. Phenotyping cilia dynamics through multi-DDM provides novel insight into the response of ciliary beating following treatment with drugs, and has application in the broader context of respiratory disease and for drug screening.One sentence summaryA semi-automated and unbiased assay based on multiscale differential dynamic microscopy (multi-DDM) detects changes in the coordination and frequency of ciliary beating in F508del/F508del primary human airway cells under different conditions and in response to CFTR-modulating compounds.


2001 ◽  
Vol 110 (11) ◽  
pp. 1011-1016 ◽  
Author(s):  
Yang-Gi Min ◽  
Chang-Ho Lee ◽  
Chae-Seo Rhee ◽  
Chul Hee Lee ◽  
Won Jin Yi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document