H2O2-mediated permeability II: importance of tyrosine phosphatase and kinase activity

2001 ◽  
Vol 281 (6) ◽  
pp. C1940-C1947 ◽  
Author(s):  
Christopher G. Kevil ◽  
Naotsuka Okayama ◽  
J. Steven Alexander

We previously reported that exposure of endothelial cells to H2O2results in a loss of cell-cell apposition and increased endothelial solute permeability. The purpose of this study was to determine how tyrosine phosphorylation and tyrosine phosphatases contribute to oxidant-mediated disorganization of endothelial cell junctions. We found that H2O2caused a rapid decrease in total cellular phosphatase activity that facilitates a compensatory increase in cellular phosphotyrosine residues. H2O2exposure also results in increased endothelial monolayer permeability, which was attenuated by pp60, an inhibitor of src kinase. Inhibition of protein tyrosine phosphatase activity by phenylarsine oxide (PAO) demonstrated a similar permeability profile compared with H2O2, suggesting that tyrosine phosphatase activity is important in maintaining a normal endothelial solute barrier. Immunofluorescence shows that H2O2exposure caused a loss of pan-reactive cadherin and β-catenin from cell junctions that was not blocked by the src kinase inhibitor PP1. H2O2also caused β-catenin to dissociate from the endothelial cytoskeleton, which was not prevented by PP1. Finally, we determined that PP1 did not prevent cadherin internalization. These data suggest that oxidants like H2O2produce biological effects through protein phosphotyrosine modifications by decreasing total cellular phosphatase activity combined with increased src kinase activity, resulting in increased endothelial solute permeability.

2003 ◽  
Vol 284 (3) ◽  
pp. H994-H1002 ◽  
Author(s):  
David R. Mucha ◽  
Carter L. Myers ◽  
Richard C. Schaeffer

Endothelial monolayer hyperpermeability is regulated by a myosin light chain phosphorylation (MLCP)-dependent contractile mechanism. In this study, we tested the role of Src-dependent tyrosine phosphorylation to modulate endothelial contraction and monolayer barrier function with the use of the myosin phosphatase inhibitor calyculin A (CalA) to directly elevate MLCP with the Src family tyrosine kinase inhibitor herbimycin A (HA) in bovine pulmonary artery endothelial cells (EC). CalA stimulated an increase in MLCP, Src kinase activity, an increase in the tyrosine phosphorylation of paxillin and focal adhesion (FA) kinase (p125FAK), and monolayer hyperpermeability. Microscopic examination of CalA-treated EC revealed a contractile morphology characterized by peripheral contractile bands of actomyosin filaments and stress fibers linked to phosphotyrosine-containing FAs. These CalA-dependent events were HA sensitive. HA alone stimulated an improvement in monolayer barrier formation by reducing the levels of MLCP and phosphotyrosine-containing proteins and the number of large paracellular holes. These data show that Src kinase plays an important role in regulating monolayer hyperpermeability through adjustments in tyrosine phosphorylation, MLCP, and EC contraction.


2003 ◽  
Vol 278 (36) ◽  
pp. 34073-34078 ◽  
Author(s):  
Dominique T. Brandt ◽  
Axel Goerke ◽  
Marion Heuer ◽  
Mario Gimona ◽  
Michael Leitges ◽  
...  

2004 ◽  
Vol 24 (16) ◽  
pp. 6980-6992 ◽  
Author(s):  
Wahn Soo Choi ◽  
Takaaki Hiragun ◽  
Jun Ho Lee ◽  
Young Mi Kim ◽  
Hyoung-Pyo Kim ◽  
...  

ABSTRACT Both phospholipase D1 (PLD1) and PLD2 regulate degranulation when RBL-2H3 cells are stimulated via the immunoglobulin E receptor, FcεRI. However, the activation mechanism for PLD2 is unclear. As reported here, PLD2 but not PLD1 is phosphorylated through the Src kinases, Fyn and Fgr, and this phosphorylation appears to regulate PLD2 activation and degranulation. For example, only hemagglutinin-tagged PLD2 was tyrosine phosphorylated in antigen-stimulated cells that had been made to express HA-PLD1 and HA-PLD2. This phosphorylation was blocked by a Src kinase inhibitor or by small interfering RNAs directed against Fyn and Fgr and was enhanced by overexpression of Fyn and Fgr but not by other Src kinases. The phosphorylation and activity of PLD2 were further enhanced by the tyrosine phosphatase inhibitor, Na3VO4. Mutation of PLD2 at tyrosines 11, 14, 165, or 470 partially impaired, and mutation of all tyrosines blocked, PLD2 phosphorylation and activation, although two of these mutations were detrimental to PLD2 function. PLD2 phosphorylation preceded degranulation, both events were equally sensitive to inhibition of Src kinase activity, and both were enhanced by coexpression of PLD2 and the Src kinases. The findings provide the first description of a mechanism for activation of PLD2 in a physiological setting and of a role for Fgr in FcεRI-mediated signaling.


1997 ◽  
Vol 272 (34) ◽  
pp. 21113-21119 ◽  
Author(s):  
Ally-Khan Somani ◽  
Jerome S. Bignon ◽  
Gordon B. Mills ◽  
Katherine A. Siminovitch ◽  
Donald R. Branch

1993 ◽  
Vol 13 (3) ◽  
pp. 1464-1470
Author(s):  
S Bagrodia ◽  
S J Taylor ◽  
D Shalloway

The chicken proto-oncoprotein c-Src is phosphorylated by p34cdc2 during mitosis concomitant with increased c-Src tyrosine kinase activity. On the basis of indirect evidence, we previously suggested that this is caused by partial dephosphorylation at Tyr-527, the phosphorylation of which suppresses c-Src kinase activity. In support of this hypothesis, we now show that treatment of cells with a protein tyrosine phosphatase inhibitor, sodium vanadate, blocks the mitotic increase in Src kinase activity. Also, we show that an amino-terminal mutation that prevents myristylation (and membrane localization) of c-Src does not interfere with the p34cdc2-mediated phosphorylations but blocks both mitotic dephosphorylation of Tyr-527 (in kinase-defective Src) and stimulation of c-Src kinase activity. Furthermore, in unsynchronized cells, the kinase activity of nonmyristylated c-Src is suppressed by 60% relative to wild-type c-Src, presumably because of increased Tyr-527 phosphorylation. Consistent with this, the Tyr-527 dephosphorylation rate measured in cell homogenates is much higher for wild-type, myristylated c-Src than for nonmyristylated c-Src. Tyr-527 phosphatase activity was primarily associated with the nonsoluble subcellular fraction. These findings suggest that the phosphatase(s) that acts on Tyr-527 is membrane bound and indicate that membrane localization of c-Src is necessary for its mitotic activation by dephosphorylation of Tyr-527.


Sign in / Sign up

Export Citation Format

Share Document