scholarly journals AMP-activated protein kinase rescues the angiogenic functions of endothelial progenitor cells via manganese superoxide dismutase induction in type 1 diabetes

2011 ◽  
Vol 300 (6) ◽  
pp. E1135-E1145 ◽  
Author(s):  
Xiao-Rong Wang ◽  
Ming-Wei Zhang ◽  
Dan-Dan Chen ◽  
Yun Zhang ◽  
Alex F. Chen

Endothelial progenitor cells (EPCs) play an essential role in angiogenesis but are functionally impaired in diabetes. We recently reported that decreased expression of manganese superoxide dismutase (MnSOD) critically contributes to diabetic EPC dysfunction. AMP-activated protein kinase (AMPK) activation has been shown to induce MnSOD and suppress hyperglycemia-induced mitochondrial ROS production in endothelial cells. However, whether AMPK protects EPCs from oxidative stress in diabetes is unknown. We tested the hypothesis that AMPK activation rescues impaired EPC functions through MnSOD induction in type 1 diabetes. Bone marrow-derived EPCs from adult male streptozotocin-induced diabetic mice and normal controls were used. AMPK activity was decreased in diabetic EPCs, indicated by reduced AMPK and acetyl-CoA carboxylase phosphorylation. AMPK activation by treating diabetic EPCs with its selective agonist AICAR rescued their in vitro functions, including Matrigel tube formation, adhesion, and migration. Furthermore, AICAR restored the decreased MnSOD protein and enzymatic activity and suppressed the mitochondrial superoxide level in diabetic EPCs, indicated by MitoSOX flow cytometry. These beneficial effects of AICAR on MnSOD and EPC functions were significantly attenuated by silencing MnSOD or AMPK antagonist compound C pretreatment. Finally, the expression of protein phosphatase 2A, a key enzyme for AMPK dephosphorylation and inactivation, was increased in diabetic EPCs, and its inhibition by siRNA or okadaic acid reversed the deficient AMPK activation and MnSOD level in diabetic EPCs. These findings demonstrate for the first time that AMPK activation rescues impaired EPC functions and suppresses mitochondrial superoxide by inducing MnSOD in type 1 diabetes.

Cytokine ◽  
1995 ◽  
Vol 7 (6) ◽  
pp. 517-525 ◽  
Author(s):  
Joseph A. Prezioso ◽  
Jue Wang ◽  
Misson Kim ◽  
Lisa Duty ◽  
David J. Tweardy ◽  
...  

2009 ◽  
Vol 296 (6) ◽  
pp. R1702-R1708 ◽  
Author(s):  
X. Fan ◽  
Y. Ding ◽  
S. Brown ◽  
L. Zhou ◽  
M. Shaw ◽  
...  

In nondiabetic rodents, AMP-activated protein kinase (AMPK) plays a role in the glucose-sensing mechanism used by the ventromedial hypothalamus (VMH), a key brain region involved in the detection of hypoglycemia. However, AMPK is regulated by both hyper- and hypoglycemia, so whether AMPK plays a similar role in type 1 diabetes (T1DM) is unknown. To address this issue, we used four groups of chronically catheterized male diabetic BB rats, a rodent model of autoimmune T1DM with established insulin—requiring diabetes (40 ± 4 pmol/l basal c-peptide). Two groups were subjected to 3 days of recurrent hypoglycemia (RH), while the other two groups were kept hyperglycemic [chronic hyperglycemia (CH)]. All groups subsequently underwent hyperinsulinemic hypoglycemic clamp studies on day 4 in conjunction with VMH microinjection with either saline (control) or AICAR (5-aminoimidazole-4-carboxamide) to activate AMPK. Compared with controls, local VMH application of AICAR during hypoglycemia amplified both glucagon [means ± SE, area under the curve over time (AUC/ t) 144 ± 43 vs. 50 ± 11 ng·l−1·min−1; P < 0.05] and epinephrine [4.27 ± 0.96 vs. 1.06 ± 0.26 nmol·l−1·min−1; P < 0.05] responses in RH-BB rats, and amplified the glucagon [151 ± 22 vs. 85 ± 22 ng·l−1·min−1; P < 0.05] response in CH-BB rats. We conclude that VMH AMPK also plays a role in glucose-sensing during hypoglycemia in a rodent model of T1DM. Moreover, our data suggest that it may be possible to partially restore the hypoglycemia-specific glucagon secretory defect characteristic of T1DM through manipulation of VMH AMPK.


Sign in / Sign up

Export Citation Format

Share Document