scholarly journals Impaired glucose homeostasis in insulin-like growth factor-binding protein-3-transgenic mice

2002 ◽  
Vol 283 (5) ◽  
pp. E937-E945 ◽  
Author(s):  
Josef V. Silha ◽  
Yaoting Gui ◽  
Liam J. Murphy

Glucose homeostasis was examined in male transgenic (Tg) mice that overexpressed the human insulin-like growth factor (IGF)-binding protein (IGFBP)-3 cDNA, driven by either the cytomegalovirus (CMV) or the phosphoglycerate kinase (PGK) promoter. The Tg mice of both lineages demonstrated increased serum levels of human (h) IGFBP-3 and total IGF-I compared with wild-type (Wt) mice. Fasting blood glucose levels were significantly elevated in 8-wk-old CMV-binding protein (CMVBP)-3- and PGK binding protein (PGKBP)-3-Tg mice compared with Wt mice: 6.35 ± 0.22 and 5.22 ± 0.39 vs. 3.99 ± 0.26 mmol/l, respectively. Plasma insulin was significantly elevated only in CMVBP-3-Tg mice. The responses to a glucose challenge were significantly increased in both Tg strains: area under the glucose curve = 1,824 ± 65 and 1,910 ± 115 vs. 1,590 ± 67 mmol · l−1 · min for CMVBP-3, PGKBP-3, and Wt mice, respectively. The hypoglycemic effects of insulin and IGF-I were significantly attenuated in Tg mice compared with Wt mice. There were no differences in adipose tissue resistin, retinoid X receptor-α, or peroxisome proliferator-activated receptor-γ mRNA levels between Tg and Wt mice. Uptake of 2-deoxyglucose was reduced in muscle and adipose tissue from Tg mice compared with Wt mice. These data demonstrate that overexpression of hIGFBP-3 results in fasting hyperglycemia, impaired glucose tolerance, and insulin resistance.

2000 ◽  
Vol 167 (2) ◽  
pp. 295-303 ◽  
Author(s):  
JW van Neck ◽  
NF Dits ◽  
V Cingel ◽  
IA Hoppenbrouwers ◽  
SL Drop ◽  
...  

The effects of growth hormone (GH) in regulating the expression of the hepatic and renal GH and insulin-like growth factor (IGF) system were studied by administering a novel GH receptor antagonist (GHRA) (B2036-PEG) at different doses (0, 1.25, 2.5, 5 and 10 mg/kg/day) to mice for 7 days. No differences were observed in the groups with respect to body weight, food consumption or blood glucose. However, a dose-dependent decrease was observed in circulating IGF-I levels and in hepatic and renal IGF-I levels at the highest doses. In contrast, in the 5 and 10 mg/kg/day GHRA groups, circulating and hepatic transcriptional IGF binding protein-3 (IGFBP-3) levels were not modified, likely resulting in a significantly decreased IGF-I/IGFBP-3 ratio. Hepatic GH receptor (GHR) and GH binding protein (GHBP) mRNA levels increased significantly in all GHRA dosage groups. Endogenous circulatory GH levels increased significantly in the 2.5 and 5 mg/kg/day GHRA groups. Remarkably, increased circulating IGFBP-4 and hepatic IGFBP-4 mRNA levels were observed in all GHRA administration groups. Renal GHR and GHBP mRNA levels were not modified by GHRA administration at the highest doses. Also, renal IGFBP-3 mRNA levels remained unchanged in most GHRA administration groups, whereas IGFBP-1, -4 and -5 mRNA levels were significantly increased in the 5 and 10 mg/kg/day GHRA administration groups. In conclusion, the effects of a specific GHR blockade on circulating, hepatic and renal GH/IGF axis reported here, may prove useful in the future clinical use of GHRAs.


2006 ◽  
Vol 16 (2) ◽  
pp. 86-92 ◽  
Author(s):  
Tiffany G. Harris ◽  
Howard D. Strickler ◽  
Herbert Yu ◽  
Michael N. Pollak ◽  
E. Scott Monrad ◽  
...  

2007 ◽  
Vol 92 (9) ◽  
pp. 3660-3666 ◽  
Author(s):  
Iona Cheng ◽  
Katherine DeLellis Henderson ◽  
Christopher A. Haiman ◽  
Laurence N. Kolonel ◽  
Brian E. Henderson ◽  
...  

1999 ◽  
Vol 146 (4) ◽  
pp. 881-892 ◽  
Author(s):  
David C. Martin ◽  
John L. Fowlkes ◽  
Bojana Babic ◽  
Rama Khokha

Insulin-like growth factor (IGF) II is overexpressed in many human cancers and is reactivated by, and crucial for viral oncogene (SV40 T antigen, [TAg])–induced tumorigenesis in several tumor models. Using a double transgenic murine hepatic tumor model, we demonstrate that tissue inhibitor of metalloproteinase 1 (TIMP-1) blocks liver hyperplasia during tumor development, despite TAg-mediated reactivation of IGF-II. Because the activity of IGFs is controlled by IGF-binding proteins (IGFBPs), we investigated whether TIMP-1 overexpression altered the IGFBP status in the transgenic liver. Ligand blotting showed that IGFBP-3 protein levels were increased in TIMP-1–overexpressing double transgenic littermates, whereas IGFBP-3 mRNA levels were not different, suggesting that TIMP-1 affects IGFBP-3 at a posttranscriptional level. IGFBP-3 proteolysis assays demonstrated that IGFBP-3 degradation was lower in TIMP-1–overexpressing livers, and zymography showed that matrix metalloproteinases (MMPs) were present in the liver homogenates and were capable of degrading IGFBP-3. As a consequence of reduced IGFBP-3 proteolysis and elevated IGFBP-3 protein levels, dissociable IGF-II levels were significantly lower in TIMP-1–overexpressing animals. This decrease in bioavailable IGF-II ultimately resulted in diminished IGF-I receptor signaling in vivo as evidenced by diminished receptor kinase activity and decreased tyrosine phosphorylation of the IGF-I receptor downstream effectors, insulin receptor substrate 1 (IRS-1), extracellular signal regulatory kinase (Erk)-1, and Erk-2. Together, these results provide evidence that TIMP-1 inhibits liver hyperplasia, an early event in TAg-mediated tumorigenesis, by reducing the activity of the tumor-inducing mitogen, IGF-II. These data implicate the control of MMP-mediated degradation of IGFBPs as a novel therapy for controlling IGF bioavailability in cancer.


1992 ◽  
Vol 134 (1) ◽  
pp. 133-139 ◽  
Author(s):  
R. C. Baxter ◽  
H. Saunders

ABSTRACT A radioimmunoassay has been established for the insulin-like growth factor-binding protein, IGFBP-6, isolated from a human transformed fibroblast cell-line. The binding proteins IGFBP-I and IGFBP-3 did not cross-react, but both IGF-I and IGF-II markedly inhibited IGFBP-6 tracer binding to antiserum. This inhibition, greater for IGF-II than for IGF-I, was fully reversed by the addition of IGFBP-3 to sequester the IGFs. After fractionation of human serum and follicular fluid samples by gel chromatography, interference in the radioimmunoassay by fractions corresponding to the 150 kDa IGF-IGFBP complex could be eliminated by IGFBP-3. The equivalent fractions from cerebrospinal fluid and amniotic fluid fractionation did not interfere in the assay. The mean IGFBP-6 level in adult human serum was 0·221 ±0·110 mg/l, with values significantly higher in men than women, and slightly decreased in pregnancy. Similar values were seen in umbilical cord serum and in amniotic and follicular fluid samples, while the mean level in cerebrospinal fluid was slightly lower, 0·152±0·049 mg/l. This assay will facilitate studies on the regulation of IGFBP-6 production, and its role as an IGF carrier. Journal of Endocrinology (1992) 134, 133–139


1996 ◽  
Vol 150 (1) ◽  
pp. 51-56 ◽  
Author(s):  
P J Fowke ◽  
S C Hodgkinson

Abstract Insulin-like growth factor binding protein-3 (IGFBP-3) is known to modulate the actions of insulin-like growth factors (IGF)-I and -II at the level of the cell. Proposed mechanisms include association of IGFBP-3 with cell surface proteoglycan, with cell surface binding proteins, proteolysis and/or internalization of IGFBP-3. In previous studies we have characterized a protein of 40 kDa in extracts of ovine pancreas and muscle which binds IGFBP-3 on ligand blot analyses. This paper reports the identity of the pancreatic species as procarboxypeptidase A (peptidyl-l-amino acid hydrolase, E.C. 3.4.17.1; proCPA). Identity was established by amino terminal sequence analysis, binding studies with pure bovine carboxypeptidase A (CPA) and observations that the binding activity was present in pancreatic secretions consistent with the role of proCPA as a secretory zymogen. The binding activity was inhibited by unlabelled IGFBP-3 at high doses (10 μg/ml) and reduced but not abolished by preincubation of 125I-IGFBP-3 with excess IGF-I. Digestion of 125I-IGFBP-3 with mature CPA produced a 26 kDa product. Modification of IGFBP-3 by CPA or binding to proCPA may provide a mechanism for modulation of IGFBP activity and hence IGF action. Journal of Endocrinology (1996) 150, 51–56


Sign in / Sign up

Export Citation Format

Share Document