Effects of carbohydrate restriction on postprandial glucose metabolism, β-cell function, gut hormone secretion, and satiety in patients with Type 2 diabetes

2021 ◽  
Vol 320 (1) ◽  
pp. E7-E18
Author(s):  
Mads J. Skytte ◽  
Amirsalar Samkani ◽  
Arne Astrup ◽  
Jan Frystyk ◽  
Jens F. Rehfeld ◽  
...  

Dietary carbohydrate restriction may improve the phenotype of Type 2 diabetes (T2D) patients. We aimed to investigate 6 wk of carbohydrate restriction on postprandial glucose metabolism, pancreatic α- and β-cell function, gut hormone secretion, and satiety in T2D patients. Methods In a crossover design, 28 T2D patients (mean HbA1c: 60 mmol/mol) were randomized to 6 wk of carbohydrate-reduced high-protein (CRHP) diet and 6 wk of conventional diabetes (CD) diet (energy-percentage carbohydrate/protein/fat: 30/30/40 vs. 50/17/33). Twenty-four-hour continuous glucose monitoring (CGM) and mixed-meal tests were undertaken and fasting intact proinsulin (IP), 32,33 split proinsulin concentrations (SP), and postprandial insulin secretion rates (ISR), insulinogenic index (IGI), β-cell sensitivity to glucose ( Bup), glucagon, and gut hormones were measured. Gastric emptying was evaluated by postprandial paracetamol concentrations and satiety by visual analog scale ratings. A CRHP diet reduced postprandial glucose area under curve (net AUC) by 60% ( P < 0.001), 24 h glucose by 13% ( P < 0.001), fasting IP and SP concentrations (both absolute and relative to C-peptide, P < 0.05), and postprandial ISR (24%, P = 0.015), while IGI and Bup improved by 31% and 45% (both P < 0.001). The CRHP diet increased postprandial glucagon net AUC by 235% ( P < 0.001), subjective satiety by 18% ( P = 0.03), delayed gastric emptying by 15 min ( P < 0.001), decreased gastric inhibitory polypeptide net AUC by 29% ( P < 0.001), but had no significant effect on glucagon-like-peptide-1, total peptide YY, and cholecystokinin responses. A CRHP diet reduced glucose excursions and improved β-cell function, including proinsulin processing, and increased subjective satiety in patients with T2D.

2006 ◽  
Vol 00 (02) ◽  
Author(s):  
Eberhard Standl ◽  
Martin Fuchtenbusch ◽  
Michael Hummel

Vildagliptin is a member of a new class of oral antidiabetogenic agents known as dipeptidyl peptidase-4 (DDP-4) inhibitors.These drugs enhance islet function by improving α- and β-cell responsiveness to glucose. Mechanism of action studies in patients with type 2 diabetes show that vildagliptin increases plasma levels of active glucagon-like peptide-1, improves glucosedependent insulin secretion and β-cell function, improves insulin sensitivity, reduces inappropriate glucagon secretion, reduces fasting and postprandial glucose, and decreases HbA1c. Large-scale treatment trials with vildagliptin 50mg or 100mg per day as monotherapy or in combination in drug-naïve patients or as add-on therapy to on-going anti-diabetic treatment show that it is effective in reducing HbA1c (with greater decreases occurring in patients with higher initial HbA1c levels), maintains efficacy in glycemic control as monotherapy for at least 1 year, is associated with infrequent hypoglycemia, and does not cause weight gain.


2015 ◽  
Vol 145 (9) ◽  
pp. 2046-2051 ◽  
Author(s):  
Matheni Sathananthan ◽  
Meera Shah ◽  
Kim L Edens ◽  
Karen B Grothe ◽  
Francesca Piccinini ◽  
...  

PLoS ONE ◽  
2016 ◽  
Vol 11 (9) ◽  
pp. e0162204 ◽  
Author(s):  
Lei Zhuang ◽  
Jian-bin Su ◽  
Xiu-lin Zhang ◽  
Hai-yan Huang ◽  
Li-hua Zhao ◽  
...  

Author(s):  
Hayat Aljaibeji ◽  
Noha Mousaad Elemam ◽  
Abdul Khader Mohammed ◽  
Hind Hasswan ◽  
Mahammad Al Thahyabat ◽  
...  

Abstract Let7b-5p is a member of the Let-7 miRNA family and one of the top expressed miRNAs in human islets that implicated in glucose homeostasis. The levels of Let7b-5p in type 2 diabetes (T2DM) patients or its role in β-cell function is still unclear. In the current study, we measured the serum levels of let7b-5p in Emirati patients with T2DM (with/without complications) and control subjects. Overexpression or silencing of let7b-5p in INS-1 (832/13) cells was performed to investigate the impact on insulin secretion, content, cell viability, apoptosis, and key functional genes. We found that serum levels of let7b-5p are significantly (p<0.05) higher in T2DM-patients or T2DM with complications compared to control subjects. Overexpression of let7b-5p increased insulin content and decreased glucose-stimulated insulin secretion, whereas silencing of let7b-5p reduced insulin content and secretion. Modulation of the expression levels of let7b-5p did not influence cell viability nor apoptosis. Analysis of mRNA and protein expression of hallmark genes in let7b-5p transfected cells revealed a marked dysregulation of Insulin, Pancreatic And Duodenal Homeobox 1 (PDX1), glucokinase (GCK), glucose transporter 2 (GLUT2), and INSR. In conclusion, an appropriate level of let7b-5p is essential to maintain β-cell function and may be regarded as a biomarker for T2DM.


1999 ◽  
Vol 277 (2) ◽  
pp. E283-E290 ◽  
Author(s):  
Pankaj Shah ◽  
Ananda Basu ◽  
Rita Basu ◽  
Robert Rizza

People with type 2 diabetes have defects in both α- and β-cell function. To determine whether lack of suppression of glucagon causes hyperglycemia when insulin secretion is impaired but not when insulin secretion is intact, twenty nondiabetic subjects were studied on two occasions. On both occasions, a “prandial” glucose infusion was given over 5 h while endogenous hormone secretion was inhibited. Insulin was infused so as to mimic either a nondiabetic ( n = 10) or diabetic ( n = 10) postprandial profile. Glucagon was infused at a rate of 1.25 ng ⋅ kg−1 ⋅ min−1, beginning either at time zero to prevent a fall in glucagon (nonsuppressed study day) or at 2 h to create a transient fall in glucagon (suppressed study day). During the “diabetic” insulin profile, lack of glucagon suppression resulted in a marked increase ( P < 0.002) in both the peak glucose concentration (11.9 ± 0.4 vs. 8.9 ± 0.4 mmol/l) and the area above basal of glucose (927 ± 77 vs. 546 ± 112 mmol ⋅ l−1 ⋅ 6 h) because of impaired ( P < 0.001) suppression of glucose production. In contrast, during the “nondiabetic” insulin profile, lack of suppression of glucagon resulted in only a slight increase ( P< 0.02) in the peak glucose concentration (9.1 ± 0.4 vs. 8.4 ± 0.3 mmol/l) and the area above basal of glucose (654 ± 146 vs. 488 ± 118 mmol ⋅ l−1 ⋅ 6 h). Of interest, when glucagon was suppressed, glucose concentrations differed only minimally during the nondiabetic and diabetic insulin profiles. These data indicate that lack of suppression of glucagon can cause substantial hyperglycemia when insulin availability is limited, therefore implying that inhibitors of glucagon secretion and/or glucagon action are likely to be useful therapeutic agents in such individuals.


Sign in / Sign up

Export Citation Format

Share Document