scholarly journals Chronic exposure to elevated norepinephrine suppresses insulin secretion in fetal sheep with placental insufficiency and intrauterine growth restriction

2010 ◽  
Vol 298 (4) ◽  
pp. E770-E778 ◽  
Author(s):  
Rafael A. Leos ◽  
Miranda J. Anderson ◽  
Xiaochuan Chen ◽  
Juliana Pugmire ◽  
K. Arbor Anderson ◽  
...  

In this study, we examined chronic norepinephrine suppression of insulin secretion in sheep fetuses with placental insufficiency-induced intrauterine growth restriction (IUGR). Glucose-stimulated insulin secretion (GSIS) was measured with a square-wave hyperglycemic clamp in the presence or absence of adrenergic receptor antagonists phentolamine (α) and propranolol (β). IUGR fetuses were hypoglycemic and hypoxemic and had lower GSIS responsiveness ( P ≤ 0.05) than control fetuses. IUGR fetuses also had elevated plasma norepinephrine (3,264 ± 614 vs. 570 ± 86 pg/ml; P ≤ 0.05) and epinephrine (164 ± 32 vs. 60 ± 12 pg/ml; P ≤ 0.05) concentrations. In control fetuses, adrenergic inhibition increased baseline plasma insulin concentrations (1.7-fold, P ≤ 0.05), whereas during hyperglycemia insulin was not different. A greater ( P ≤ 0.05) response to adrenergic inhibition was found in IUGR fetuses, and the average plasma insulin concentrations increased 4.9-fold at baseline and 7.1-fold with hyperglycemia. Unlike controls, basal plasma glucose concentrations fell ( P ≤ 0.05) with adrenergic antagonists. GSIS responsiveness, measured by the change in insulin, was higher (8.9-fold, P ≤ 0.05) in IUGR fetuses with adrenergic inhibition than controls (1.8-fold, not significant), showing that norepinephrine suppresses insulin secretion in IUGR fetuses. Strikingly, in IUGR fetuses, adrenergic inhibition resulted in a greater GSIS responsiveness, because β-cell mass was 56% lower and the maximal stimulatory insulin response tended ( P < 0.1) to be higher than controls. This persistent norepinephrine suppression appears to be partially explained by higher mRNA concentrations of adrenergic receptors α1D, α2A, and α2B in a cohort of fetuses that were naïve to the antagonists. Therefore, norepinephrine suppression of insulin secretion was maintained, in part, by upregulating adrenergic receptor expression, but the β-cells also appeared to compensate with enhanced GSIS. These findings may begin to explain why IUGR infants have a propensity for increased glucose requirements if norepinephrine is suddenly decreased after birth.

Endocrinology ◽  
2016 ◽  
Vol 157 (5) ◽  
pp. 2104-2115 ◽  
Author(s):  
Antoni R. Macko ◽  
Dustin T. Yates ◽  
Xiaochuan Chen ◽  
Leslie A. Shelton ◽  
Amy C. Kelly ◽  
...  

Abstract In pregnancies complicated by placental insufficiency and intrauterine growth restriction (IUGR), fetal glucose and oxygen concentrations are reduced, whereas plasma norepinephrine and epinephrine concentrations are elevated throughout the final third of gestation. Here we study the effects of chronic hypoxemia and hypercatecholaminemia on β-cell function in fetal sheep with placental insufficiency-induced IUGR that is produced by maternal hyperthermia. IUGR and control fetuses underwent a sham (intact) or bilateral adrenal demedullation (AD) surgical procedure at 0.65 gestation. As expected, AD-IUGR fetuses had lower norepinephrine concentrations than intact-IUGR fetuses despite being hypoxemic and hypoglycemic. Placental insufficiency reduced fetal weights, but the severity of IUGR was less with AD. Although basal plasma insulin concentrations were lower in intact-IUGR and AD-IUGR fetuses compared with intact-controls, glucose-stimulated insulin concentrations were greater in AD-IUGR fetuses compared with intact-IUGR fetuses. Interestingly, AD-controls had lower glucose- and arginine-stimulated insulin concentrations than intact-controls, but AD-IUGR and AD-control insulin responses were not different. To investigate chronic hypoxemia in the IUGR fetus, arterial oxygen tension was increased to normal levels by increasing the maternal inspired oxygen fraction. Oxygenation of IUGR fetuses enhanced glucose-stimulated insulin concentrations 3.3-fold in intact-IUGR and 1.7-fold in AD-IUGR fetuses but did not lower norepinephrine and epinephrine concentrations. Together these findings show that chronic hypoxemia and hypercatecholaminemia have distinct but complementary roles in the suppression of β-cell responsiveness in IUGR fetuses.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
D. T. Yates ◽  
A. R. Macko ◽  
M. Nearing ◽  
X. Chen ◽  
R. P. Rhoads ◽  
...  

Fetal adaptations to placental insufficiency alter postnatal metabolic homeostasis in skeletal muscle by reducing glucose oxidation rates, impairing insulin action, and lowering the proportion of oxidative fibers. In animal models of intrauterine growth restriction (IUGR), skeletal muscle fibers have less myonuclei at birth. This means that myoblasts, the sole source for myonuclei accumulation in fibers, are compromised. Fetal hypoglycemia and hypoxemia are complications that result from placental insufficiency. Hypoxemia elevates circulating catecholamines, and chronic hypercatecholaminemia has been shown to reduce fetal muscle development and growth. We have found evidence for adaptations in adrenergic receptor expression profiles in myoblasts and skeletal muscle of IUGR sheep fetuses with placental insufficiency. The relationship ofβ-adrenergic receptors shifts in IUGR fetuses because Adrβ2 expression levels decline and Adrβ1 expression levels are unaffected in myofibers and increased in myoblasts. This adaptive response would suppress insulin signaling, myoblast incorporation, fiber hypertrophy, and glucose oxidation. Furthermore, thisβ-adrenergic receptor expression profile persists for at least the first month in IUGR lambs and lowers their fatty acid mobilization. Developmental programming of skeletal muscle adrenergic receptors partially explains metabolic and endocrine differences in IUGR offspring, and the impact on metabolism may result in differential nutrient utilization.


Endocrinology ◽  
2006 ◽  
Vol 147 (3) ◽  
pp. 1488-1497 ◽  
Author(s):  
Sean W. Limesand ◽  
Paul J. Rozance ◽  
Gary O. Zerbe ◽  
John C. Hutton ◽  
William W. Hay

We determined in vivo and in vitro pancreatic islet insulin secretion and glucose metabolism in fetuses with intrauterine growth restriction (IUGR) caused by chronic placental insufficiency to identify functional deficits in the fetal pancreas that might be caused by nutrient restriction. Plasma insulin concentrations in the IUGR fetuses were 69% lower at baseline and 76% lower after glucose-stimulated insulin secretion (GSIS). Similar deficits were observed with arginine-stimulated insulin secretion. Fetal islets, immunopositive for insulin and glucagon, secreted insulin in response to increasing glucose and KCl concentrations. Insulin release as a fraction of total insulin content was greater in glucose-stimulated IUGR islets, but the mass of insulin released per IUGR islet was lower because of their 82% lower insulin content. A deficiency in islet glucose metabolism was found in the rate of islet glucose oxidation at maximal stimulatory glucose concentrations (11 mmol/liter). Thus, pancreatic islets from nutritionally deprived IUGR fetuses caused by chronic placental insufficiency have impaired insulin secretion caused by reduced glucose-stimulated glucose oxidation rates, insulin biosynthesis, and insulin content. This impaired GSIS occurs despite an increased fractional rate of insulin release that results from a greater proportion of releasable insulin as a result of lower insulin stores. Because this animal model recapitulates the human pathology of chronic placental insufficiency and IUGR, the β-cell GSIS dysfunction in this model might indicate mechanisms that are developmentally adaptive for fetal survival but in later life might predispose offspring to adult-onset diabetes that has been previously associated with IUGR.


2017 ◽  
Vol 313 (2) ◽  
pp. R101-R109 ◽  
Author(s):  
Leticia E. Camacho ◽  
Xiaochuan Chen ◽  
William W. Hay ◽  
Sean W. Limesand

Intrauterine growth restriction (IUGR) is associated with persistent metabolic complications, but information is limited for IUGR infants. We determined glucose-stimulated insulin secretion (GSIS) and insulin sensitivity in young lambs with placental insufficiency-induced IUGR. Lambs with hyperthermia-induced IUGR ( n = 7) were compared with control lambs ( n = 8). GSIS was measured at 8 ± 1 days of age, and at 15 ± 1 days, body weight-specific glucose utilization rates were measured with radiolabeled d-glucose during a hyperinsulinemic-euglycemic clamp (HEC). IUGR lambs weighed 23% less ( P < 0.05) than controls at birth. Fasting plasma glucose and insulin concentrations were not different between IUGR and controls for either study. First-phase insulin secretion was enhanced 2.3-fold in IUGR lambs compared with controls. However, second-phase insulin concentrations, glucose-potentiated arginine-stimulated insulin secretion, and β-cell mass were not different, indicating that IUGR β-cells have an intrinsic enhancement in acute GSIS. Compared with controls, IUGR lambs had higher body weight-specific glucose utilization rates and greater insulin sensitivity at fasting (1.6-fold) and hyperinsulinemic periods (2.4-fold). Improved insulin sensitivity for glucose utilization was not due to differences in skeletal muscle insulin receptor and glucose transporters 1 and 4 concentrations. Plasma lactate concentrations during HEC were elevated in IUGR lambs compared with controls, but no differences were found for glycogen content or citrate synthase activity in liver and muscle. Greater insulin sensitivity for glucose utilization and enhanced acute GSIS in young lambs are predicted from fetal studies but may promote conditions that exaggerate glucose disposal and lead to episodes of hypoglycemia in IUGR infants.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Raj Raghupathy ◽  
Majedah Al-Azemi ◽  
Fawaz Azizieh

Intrauterine growth restriction (IUGR) is an important perinatal syndrome that poses several serious short- and long-term effects. We studied cytokine production by maternal peripheral blood lymphocytes stimulated by trophoblast antigens. 36 women with a diagnosis of IUGR and 22 healthy women with normal fetal growth were inducted. Peripheral blood mononuclear cells were stimulated with trophoblast antigens and levels of the proinflammatory cytokines IL-6, IL-8, IL-12, IL-23, IFNγ, and TNFα and the anti-inflammatory cytokines IL-4, IL-10, and IL-13 were measured in culture supernatants by ELISA. IL-8 was produced at higher levels by blood cells of the IUGR group than normal pregnant women, while IL-13 was produced at lower levels. IL-8, IFNγ, and TNFα were higher in IUGR with placental insufficiency than in normal pregnancy. IL-12 levels were higher and IL-10 levels were lower in IUGR with placental insufficiency than in IUGR without placental insufficiency. We suggest that a stronger pro-inflammatory bias exists in IUGR as compared to normal pregnancy and in IUGR with placental insufficiency when compared to IUGR without placental insufficiency. Several ratios of proinflammatory to anti-inflammatory cytokines also support the existence of an inflammatory bias in IUGR.


Sign in / Sign up

Export Citation Format

Share Document