Effect of heart failure on the regulation of skeletal muscle protein synthesis, breakdown, and apoptosis

2003 ◽  
Vol 284 (5) ◽  
pp. E1001-E1008 ◽  
Author(s):  
Rebecca Persinger ◽  
Yvonne Janssen-Heininger ◽  
Simon S. Wing ◽  
Dwight E. Matthews ◽  
Martin M. LeWinter ◽  
...  

Heart failure is often characterized by skeletal muscle atrophy. The mechanisms underlying muscle wasting, however, are not fully understood. We studied 30 Dahl salt-sensitive rats (10 male, 20 female) fed either a high-salt (HS; n = 15) or a low-salt (LS; n = 15) diet. This strain develops cardiac hypertrophy and failure when fed a HS diet. LS controls were matched to HS rats for gender and duration of diet. Body mass, food intake, and muscle mass and composition were measured. Skeletal muscle protein synthesis was measured by isotope dilution. An additional group of 27 rats (HS, n = 16; LS; n = 11) were assessed for expression of genes regulating protein breakdown and apoptosis. Gastrocnemius and plantaris muscles weighed less (16 and 22%, respectively) in HS than in LS rats ( P < 0.01). No differences in soleus or tibialis anterior weights were found. Differences in muscle mass were abolished after data were expressed relative to body size, because HS rats tended ( P = 0.094) to weigh less. Lower body mass in HS rats was related to a 16% reduction ( P < 0.01) in food intake. No differences in muscle protein or DNA content, the protein-to-DNA ratio, or muscle protein synthesis were found. Finally, no differences in skeletal muscle gene expression were found to suggest increased protein breakdown or apoptosis in HS rats. Our results suggest that muscle wasting in this model of heart failure is not associated with alterations in skeletal muscle metabolism. Instead, muscle atrophy was related to reduced body weight secondary to decreased food intake. These findings argue against the notion that heart failure is characterized by a skeletal muscle myopathy that predisposes to atrophy.

1997 ◽  
Vol 82 (3) ◽  
pp. 807-810 ◽  
Author(s):  
Arny A. Ferrando ◽  
Kevin D. Tipton ◽  
Marcas M. Bamman ◽  
Robert R. Wolfe

Ferrando, Arny A., Kevin D. Tipton, Marcas M. Bamman, and Robert R. Wolfe. Resistance exercise maintains skeletal muscle protein synthesis during bed rest. J. Appl. Physiol. 82(3): 807–810, 1997.—Spaceflight results in a loss of lean body mass and muscular strength. A ground-based model for microgravity, bed rest, results in a loss of lean body mass due to a decrease in muscle protein synthesis (MPS). Resistance training is suggested as a proposed countermeasure for spaceflight-induced atrophy because it is known to increase both MPS and skeletal muscle strength. We therefore hypothesized that scheduled resistance training throughout bed rest would ameliorate the decrease in MPS. Two groups of healthy volunteers were studied during 14 days of simulated microgravity. One group adhered to strict bed rest (BR; n = 5), whereas a second group engaged in leg resistance exercise every other day throughout bed rest (BREx; n = 6). MPS was determined directly by the incorporation of infusedl-[ ring-13C6]phenylalanine into vastus lateralis protein. After 14 days of bed rest, MPS in the BREx group did not change and was significantly greater than in the BR group. Thus moderate-resistance exercise can counteract the decrease in MPS during bed rest.


1991 ◽  
Vol 260 (3) ◽  
pp. E499-E504 ◽  
Author(s):  
D. A. Fryburg ◽  
R. A. Gelfand ◽  
E. J. Barrett

The short-term effects of growth hormone (GH) on skeletal muscle protein synthesis and degradation in normal humans are unknown. We studied seven postabsorptive healthy men (age 18-23 yr) who received GH (0.014 micrograms.kg-1.min-1) via intrabrachial artery infusion for 6 h. The effects of GH on forearm amino acid and glucose balances and on forearm amino acid kinetics [( 3H]Phe and [14C]Leu) were determined after 3 and 6 h of the GH infusion. Forearm deep vein GH rose to 35 +/- 6 ng/ml in response to GH, whereas systemic levels of GH, insulin, and insulin-like growth factor I (IGF-I) were unchanged. Forearm glucose uptake did not change during the study. After 6 h, GH suppressed forearm net release (3 vs. 6 h) of Phe (P less than 0.05), Leu (P less than 0.01), total branched-chain amino acids (P less than 0.025), and essential neutral amino acids (0.05 less than P less than 0.1). The effect on the net balance of Phe and Leu was due to an increase in the tissue uptake for Phe (71%, P less than 0.05) and Leu (37%, P less than 0.005) in the absence of any significant change in release of Phe or Leu from tissue. In the absence of any change in systemic GH, IGF-I, or insulin, these findings suggest that locally infused GH stimulates skeletal muscle protein synthesis. These findings have important physiological implications for both the role of daily GH pulses and the mechanisms through which GH can promote protein anabolism.


2008 ◽  
Vol 22 (S1) ◽  
Author(s):  
Lisa Vislocky ◽  
P. Courtney Gaine ◽  
Matthew Pikosky ◽  
Douglas Bolster ◽  
Arny Ferrando ◽  
...  

Author(s):  
James P. White

Skeletal muscle protein synthesis is a highly complex process, influenced by nutritional status, mechanical stimuli, repair programs, hormones, and growth factors. The molecular aspects of protein synthesis are centered around the mTORC1 complex. However, the intricacies of mTORC1 regulation, both up and downstream, have expanded overtime. Moreover, the plastic nature of skeletal muscle makes it a unique tissue, having to coordinate between temporal changes in myofiber metabolism and hypertrophy/atrophy stimuli within a tissue with considerable protein content. Skeletal muscle manages the push and pull between anabolic and catabolic pathways through key regulatory proteins to promote energy production in times of nutrient deprivation or activate anabolic pathways in times of nutrient availability and anabolic stimuli. Branched-chain amino acids (BCAAs) can be used for both energy production and signaling to induce protein synthesis. The metabolism of BCAAs occur in tandem with energetic and anabolic processes, converging at several points along their respective pathways. The fate of intramuscular BCAAs adds another layer of regulation, which has consequences to promote or inhibit muscle fiber protein anabolism. This review will outline the general mechanisms of muscle protein synthesis and describe how metabolic pathways can regulate this process. Lastly, we will discuss how BCAA availability and demand coordinate with synthesis mechanisms and identify key factors involved in intramuscular BCAA trafficking.


Sign in / Sign up

Export Citation Format

Share Document