Increase in S6K1 phosphorylation in human skeletal muscle following resistance exercise occurs mainly in type II muscle fibers

2006 ◽  
Vol 290 (6) ◽  
pp. E1245-E1252 ◽  
Author(s):  
René Koopman ◽  
Antoine H. G. Zorenc ◽  
Rudy J. J. Gransier ◽  
David Cameron-Smith ◽  
Luc J. C. van Loon

To investigate the in vivo effects of resistance exercise on translational control in human skeletal muscle, we determined the phosphorylation of AMP-activated kinase (AMPK), eukaryotic initiation factor 4E-binding protein (4E-BP1), p70/p85-S6 protein kinase (S6K1), and ribosomal S6 protein (S6). Furthermore, we investigated whether changes in the phosphorylation of S6K1 are muscle fiber type specific. Eight male subjects performed a single high-intensity resistance exercise session. Muscle biopsies were collected before and immediately after exercise and after 30 and 120 min of postexercise recovery. The phosphorylation statuses of AMPK, 4E-BP1, S6K1, and S6 were determined by Western blotting with phospho-specific and pan antibodies. To determine fiber type-specific changes in the phosphorylation status of S6K1, immunofluorescence microscopy was applied. AMPK phosphorylation was increased approximately threefold immediately after resistance exercise, whereas 4E-BP1 phosphorylation was reduced to 27 ± 6% of preexercise values. Phosphorylation of S6K1 at Thr421/Ser424 was increased 2- to 2.5-fold during recovery but did not induce a significant change in S6 phosphorylation. Phosphorylation of S6K1 was more pronounced in the type II vs. type I muscle fibers. Before exercise, phosphorylated S6K1 was predominantly located in the nuclei. After 2 h of postexercise recovery, phospho-S6K1 was primarily located in the cytosol of type II muscle fibers. We conclude that resistance exercise effectively increases the phosphorylation of S6K1 on Thr421/Ser424, which is not associated with a substantial increase in S6 phosphorylation in a fasted state.

2007 ◽  
Vol 103 (6) ◽  
pp. 2105-2111 ◽  
Author(s):  
A. R. Tupling ◽  
E. Bombardier ◽  
R. D. Stewart ◽  
C. Vigna ◽  
A. E. Aqui

To investigate the time course of fiber type-specific heat shock protein 70 (Hsp70) expression in human skeletal muscle after acute exercise, 10 untrained male volunteers performed single-legged isometric knee extensor exercise at 60% of their maximal voluntary contraction (MVC) with a 50% duty cycle (5-s contraction and 5-s relaxation) for 30 min. Muscle biopsies were collected from the vastus lateralis before (Pre) exercise in the rested control leg (C) and immediately after exercise (Post) in the exercised leg (E) only and on recovery days 1 (R1), 2 (R2), 3 (R3), and 6 (R6) from both legs. As demonstrated by Western blot analysis, whole muscle Hsp70 content was unchanged ( P > 0.05) immediately after exercise (Pre vs. Post), was increased ( P < 0.05) by ∼43% at R1, and remained elevated throughout the entire recovery period in E only. Hsp70 expression was also assessed in individual muscle fiber types I, IIA, and IIAX/IIX by immunohistochemistry. There were no fiber type differences ( P > 0.05) in basal Hsp70 expression. Immediately after exercise, Hsp70 expression was increased ( P < 0.05) in type I fibers by ∼87% but was unchanged ( P > 0.05) in type II fibers (Pre vs. Post). At R1 and throughout recovery, Hsp70 content in E was increased above basal levels ( P < 0.05) in all fiber types, but Hsp70 expression was always highest ( P < 0.05) in type I fibers. Hsp70 content in C was not different from Pre at any time throughout recovery. Glycogen depletion was observed at Post in all type II, but not type I, fibers, suggesting that the fiber type differences in exercise-induced Hsp70 expression were not related to glycogen availability. These results demonstrate that the time course of exercise-induced Hsp70 expression in human skeletal muscle is fiber type specific.


2019 ◽  
Vol 126 (6) ◽  
pp. 1607-1618 ◽  
Author(s):  
Daniel Jacko ◽  
Käthe Bersiner ◽  
Jonas Hebchen ◽  
Markus de Marées ◽  
Wilhelm Bloch ◽  
...  

αB-crystallin (CRYAB) is an important actor in the immediate cell stabilizing response following mechanical stress in skeletal muscle. Yet, only little is known regarding myofiber type-specific stress responses of CRYAB. We investigated whether the phosphorylation of CRYAB at serine 59 (pCRYABSer59) and its cytoskeleton association are influenced by varying load-intensity and -volume in a fiber type-specific manner. Male subjects were assigned to 1, 5, and 10 sets of different acute resistance exercise protocols: hypertrophy (HYP), maximum strength (MAX), strength endurance (SE), low intensity (LI), and three sets of maximum eccentric resistance exercise (ECC). Skeletal muscle biopsies were taken at baseline and 30 min after exercise. Western blot revealed an increase inpCRYABSer59only following 5 and 10 sets in groups HYP, MAX, SE, and LI as well as following 3 sets in the ECC group. In type I fibers, immunohistochemistry determined increasedpCRYABSer59in all groups. In type II fibers,pCRYABSer59only increased in MAX and ECC groups, with the increase in type II fibers exceeding that of type I fibers in ECC. Association of CRYAB andpCRYABSer59with the cytoskeleton reflected the fiber type-specific phosphorylation pattern. Phosphorylation of CRYAB and its association with the cytoskeleton in type I and II myofibers is highly specific in terms of loading intensity and volume. Most likely, this is based on specific recruitment patterns of the different myofiber entities due to the different resistance exercise loadings. We conclude thatpCRYABSer59indicates contraction-induced mechanical stress exposure of single myofibers in consequence of resistance exercise.NEW & NOTEWORTHY We determined that the phosphorylation of αB-crystallin at serine 59 (pCRYABSer59) after resistance exercise differs between myofiber types in a load- and intensity-dependent manner. The determination ofpCRYABSer59could serve as a marker indirectly indicating contractile involvement and applied mechanical stress on individual fibers. By that, it is possible to retrospectively assess the impact of resistance exercise loading on skeletal muscle fiber entities.


Author(s):  
Sidney Abou Sawan ◽  
Nathan Hodson ◽  
Paul Babits ◽  
Julia M. Malowany ◽  
Dinesh A. Kumbhare ◽  
...  

Satellite cells (SC) play an integral role in the recovery from skeletal muscle damage and supporting muscle hypertrophy. Acute resistance exercise typically elevates type I and type II SC content 24-96 hours post-exercise in healthy young males, although comparable research in females is lacking. We aimed to elucidate whether sex-based differences exist in fiber type-specific SC content after resistance exercise in the untrained (UT) and trained (T) states. Ten young males (23.0 ± 4.0y) and females (23.0 ± 4.8y) completed an acute bout of resistance exercise before and after 8 weeks of whole-body resistance training. Muscle biopsies were taken from the vastus lateralis immediately prior to and 24 and 48-hours after each bout to determine SC and myonuclear content by immunohistochemistry. Males had greater SC associated with type II fibers (P ≤ 0.03). There was no effect of acute resistance exercise on SC content in either fiber type (P ≥ 0.58) for either sex, however, training increased SC in type II fibers (P < 0.01) irrespective of sex. The change in mean 0-48 h type II SC was positively correlated with muscle fiber hypertrophy in type II fibers (r = 0.47; P = 0.035). Furthermore, the change in myonuclei per fiber was positively correlated with type I and type II fiber hypertrophy (both r = 0.68; P < 0.01). Our results suggest that SC responses to acute and chronic resistance exercise are similar in males and females and that SC and myonuclear accretion is related to training-induced muscle fiber hypertrophy.


2012 ◽  
Vol 22 (4) ◽  
pp. 292-303 ◽  
Author(s):  
Ildus I. Ahmetov ◽  
Olga L. Vinogradova ◽  
Alun G. Williams

The ability to perform aerobic or anaerobic exercise varies widely among individuals, partially depending on their muscle-fiber composition. Variability in the proportion of skeletal-muscle fiber types may also explain marked differences in aspects of certain chronic disease states including obesity, insulin resistance, and hypertension. In untrained individuals, the proportion of slow-twitch (Type I) fibers in the vastus lateralis muscle is typically around 50% (range 5–90%), and it is unusual for them to undergo conversion to fast-twitch fibers. It has been suggested that the genetic component for the observed variability in the proportion of Type I fibers in human muscles is on the order of 40–50%, indicating that muscle fiber-type composition is determined by both genotype and environment. This article briefly reviews current progress in the understanding of genetic determinism of fiber-type proportion in human skeletal muscle. Several polymorphisms of genes involved in the calcineurin–NFAT pathway, mitochondrial biogenesis, glucose and lipid metabolism, cytoskeletal function, hypoxia and angiogenesis, and circulatory homeostasis have been associated with fiber-type composition. As muscle is a major contributor to metabolism and physical strength and can readily adapt, it is not surprising that many of these gene variants have been associated with physical performance and athlete status, as well as metabolic and cardiovascular diseases. Genetic variants associated with fiber-type proportions have important implications for our understanding of muscle function in both health and disease.


1992 ◽  
Vol 262 (4) ◽  
pp. E504-E510 ◽  
Author(s):  
W. H. Martin ◽  
E. Korte ◽  
T. K. Tolley ◽  
J. E. Saffitz

To determine whether hyperthyroidism selectively increases beta-adrenergic receptor density in vessels or fibers of human skeletal muscle, we characterized beta-receptor distribution autoradiographically in muscle biopsies of 18 subjects aged 26 +/- 1 yr before and after daily administration of 100 micrograms 3,5,3'-triiodothyronine (T3) for 2 wk. To establish whether vascular and metabolic responses to beta-adrenergic stimulation are concomitantly altered, we quantified calf blood flow and plasma concentrations of glucose, lactate, glycerol, free fatty acids (FFA), insulin, and C-peptide during graded-dose isoproterenol infusion in eight of these individuals. Differences in beta-adrenergic receptor density among muscle fiber types and vascular components were highly significant (type I greater than type IIa greater than type IIb muscle fibers, P less than 0.001; and type I muscle fibers greater than resistance arterioles, P less than 0.05). Hyperthyroidism increased beta-adrenergic receptor density in all types of muscle fibers (+31-50%; P less than 0.01) but not in resistance arterioles. There was no change in calf blood flow or plasma glucose, glycerol, FFA, insulin, or C-peptide responses to isoproterenol. A rise in lactate during stages 3 and 4 of isoproterenol infusion (P less than 0.01) was observed before but not after T3 administration. Thus hyperthyroidism increases beta-adrenergic receptor density in fibers but not vessels of human skeletal muscle without increasing either metabolic or vascular responses to selective beta-adrenergic stimulation.


2018 ◽  
Vol 125 (2) ◽  
pp. 470-478 ◽  
Author(s):  
Martin Thomassen ◽  
Morten Hostrup ◽  
Robyn M. Murphy ◽  
Brett A. Cromer ◽  
Casper Skovgaard ◽  
...  

Cl− channel protein 1 (ClC-1) may be important for excitability and contractility in skeletal muscle, but ClC-1 abundance has not been examined in human muscle. The aim of the present study was to examine ClC-1 abundance in human skeletal muscle, including fiber type specific differences and the effect of exercise training. A commercially available antibody was tested with positive and negative control tissue, and it recognized specifically ClC-1 in the range from 100 to 150 kDa. Abundance of ClC-1 was 38% higher ( P < 0.01) in fast twitch Type IIa muscle fibers than in slow twitch Type I. Muscle ClC-1 abundance did not change with 4 wk of training consisting of 30 min cycling at 85% of maximal heart rate (HRmax) and 3 × 30-s all out sprints or during a 7-wk training period with 10–12 × 30 s uphill cycling and 4–5 × ~4 min cycling at 90%–95% of HRmax. ClC-1 abundance correlated negatively ( P < 0.01) with maximal oxygen consumption ( r = –0.552) and incremental exercise performance ( r = –0.546). In addition, trained cyclists had lower ( P < 0.01) ClC-1 abundance than lesser trained individuals. The present observations indicate that a low abundance of muscle ClC-1 may be beneficial for exercise performance, but the role of abundance and regulation of ClC-1 in skeletal muscle of humans with respect to exercise performance and trainability need to be elucidated. NEW & NOTEWORTHY Abundance of the Cl− channel protein 1 (ClC-1) chloride channel may be important for excitability and contractility in human skeletal muscle and may therefore have implications for fatigue development. In this study, we confirmed ClC-1 specificity for a commercially available antibody, and this study is first to our knowledge to determine ClC-1 protein abundance in human muscle by Western blotting. We observed that abundance of ClC-1 was higher in fast compared with slow twitch fibers and lower in trained individuals than in recreationally active.


2017 ◽  
Vol 313 (1) ◽  
pp. R44-R50 ◽  
Author(s):  
Shivam H. Patel ◽  
Andrew C. D’Lugos ◽  
Erica R. Eldon ◽  
Donald Curtis ◽  
Jared M. Dickinson ◽  
...  

Acetaminophen (APAP) given during chronic exercise reduces skeletal muscle collagen and cross-linking in rats. We propose that the effect of APAP on muscle extracellular matrix (ECM) may, in part, be mediated by dysregulation of the balance between matrix metalloproteinases (MMPs) and tissue inhibitors of MMPs (TIMPs). The purpose of this study was to evaluate the impact of APAP consumption during acute resistance exercise (RE) on several regulators of the ECM in human skeletal muscle. In a double-blinded, placebo-controlled, randomized crossover design, recreationally active men ( n = 8, 25 ± 2 yr) performed two trials of knee extension. Placebo (PLA) or APAP (1,000 mg/6 h) was given for 24 h before and immediately following RE. Vastus lateralis biopsies were taken at baseline and 1 and 3 h post-RE. Quantitative RT-PCR was used to determine differences in mRNA expression. MMP-2, type I collagen, and type III collagen mRNA expression was not altered by exercise or APAP ( P > 0.05). When compared with PLA, TIMP-1 expression was lower at 1 h post-RE during APAP conditions but greater than PLA at 3 h post-RE ( P < 0.05). MMP-9 expression and protein levels were elevated at 3 h post-RE independent of treatment ( P < 0.05). Lysyl oxidase expression was greater at 3 h post-RE during APAP consumption ( P < 0.05) compared with PLA. MMP-2 and TIMP-1 protein was not altered by RE or APAP ( P > 0.05). Phosphorylation of ERK1/2 and p38-MAPK increased ( P < 0.05) with RE but was not influenced by APAP. Our findings do not support our hypothesis and suggest that short-term APAP consumption before RE has a small impact on the measured ECM molecules in human skeletal muscle following acute RE.


2007 ◽  
Vol 292 (1) ◽  
pp. E151-E157 ◽  
Author(s):  
Lex B. Verdijk ◽  
René Koopman ◽  
Gert Schaart ◽  
Kenneth Meijer ◽  
Hans H. C. M. Savelberg ◽  
...  

Satellite cells (SC) are essential for skeletal muscle growth and repair. Because sarcopenia is associated with type II muscle fiber atrophy, we hypothesized that SC content is specifically reduced in the type II fibers in the elderly. A total of eight elderly (E; 76 ± 1 yr) and eight young (Y; 20 ± 1 yr) healthy males were selected. Muscle biopsies were collected from the vastus lateralis in both legs. ATPase staining and a pax7-antibody were used to determine fiber type-specific SC content (i.e., pax7-positive SC) on serial muscle cross sections. In contrast to the type I fibers, the proportion and mean cross-sectional area of the type II fibers were substantially reduced in E vs. Y. The number of SC per type I fiber was similar in E and Y. However, the number of SC per type II fiber was substantially lower in E vs. Y (0.044 ± 0.003 vs. 0.080 ± 0.007; P < 0.01). In addition, in the type II fibers, the number of SC relative to the total number of nuclei and the number of SC per fiber area were also significantly lower in E. This study is the first to show type II fiber atrophy in the elderly to be associated with a fiber type-specific decline in SC content. The latter is evident when SC content is expressed per fiber or per fiber area. The decline in SC content might be an important factor in the etiology of type II muscle fiber atrophy, which accompanies the loss of skeletal muscle with aging.


Sign in / Sign up

Export Citation Format

Share Document